- 1. Rigorously prove the following. Be careful with the multiple NTS lines that should occur in proving these mixed-logic statements. Also realize that sometimes, our "candidate" will be a formula found by scratchwork, and not a concrete number.
 - (a) Proposition: Let $x \in \mathbf{R}$. Then x = 0 if and only if, for all $y \in \mathbf{R}$, xy = x.
 - (b) Proposition: For every integer n, there is an even integer $k \in (n, \infty)$.
 - (c) Proposition: There exists $e \in \mathbf{R}$ such that xe x e + 2 = x for all $x \in \mathbf{R}$.
 - (d) Proposition: For all $x \in \mathbf{R} \setminus \{1\}$, there exists $y \in \mathbf{R}$ such that xy x y = 0.
- 2. Rigorously prove the following uniqueness results.
 - (a) Proposition: The antiderivative F(x) to $f(x) = 3x^2 \cos(x)$ such that F(0) = 3 is unique.

(Be careful: getting only one answer from your process to find F(x) is not the same as proving that F(x) is unique.)

- (b) Proposition: The positive solution to $ax^3 + bx + c = 0$ is unique when $a, b, c \in \mathbf{R}^+$.
- (c) Proposition: Suppose there exists a real number a such that $ax + 2^x = 0$ for all $x \in \mathbf{R}$. Then a is unique.
- 3. Complete these problems from the Exercises 2.1 and 2.2 sets in our book:
 - (a) p.92: #4 parts b,d,f,h,j only
 - (b) p.92: #5 parts b,d,f,h,j,l only
 - (c) p.93: #15 parts b,d,f,h only
 - (d) p.93: #16 parts b,d only
 - (e) p.93: #17 parts b,d,f,h,j,l only
 - (f) p.101: #1 parts b,d,f,h,j only
 - (g) p.101: #2 parts b,d,f,h,j only
 - (h) p.102: #13 part a only
- 4. Rigorously prove:
 - (a) Proposition: Let $X = \{5, 6\}$ and Y = [5, 6]. Then $X \subseteq Y$ but $Y \not\subseteq X$.

(I expect you to use a formal definition of intervals here: $a \in [c, d]$ if and only if $c \le a \le d$.)

(b) Proposition: Let $S = \{6a - 15b \mid a, b \in \mathbb{Z}\}$. Then $S \subseteq 3\mathbb{Z}$.