1. Rigorously prove the following. Be careful with the multiple NTS lines that should occur in proving these mixed-logic statements. Also realize that sometimes, our "candidate" will be a formula found by scratchwork, and not a concrete number.
(a) Proposition: Let $x \in \mathbf{R}$. Then $x=0$ if and only if, for all $y \in \mathbf{R}, x y=x$.
(b) Proposition: For every integer n, there is an even integer $k \in(n, \infty)$.
(c) Proposition: There exists $e \in \mathbf{R}$ such that $x e-x-e+2=x$ for all $x \in \mathbf{R}$.
(d) Proposition: For all $x \in \mathbf{R} \backslash\{1\}$, there exists $y \in \mathbf{R}$ such that $x y-x-y=0$.
2. Rigorously prove the following uniqueness results.
(a) Proposition: The antiderivative $F(x)$ to $f(x)=3 x^{2}-\cos (x)$ such that $F(0)=3$ is unique.
(Be careful: getting only one answer from your process to find $F(x)$ is not the same as proving that $F(x)$ is unique.)
(b) Proposition: The positive solution to $a x^{3}+b x+c=0$ is unique when $a, b, c \in \mathbf{R}^{+}$.
(c) Proposition: Suppose there exists a real number a such that $a x+2^{x}=0$ for all $x \in \mathbf{R}$. Then a is unique.
3. Complete these problems from the Exercises 2.1 and 2.2 sets in our book:
(a) p.92: \#4 parts b,d,f,h,j only
(b) p.92: \#5 parts b,d,f,h,j,l only
(c) p.93: \#15 parts b,d,f,h only
(d) p.93: \#16 parts b,d only
(e) p.93: \#17 parts b,d,f,h,j,l only
(f) p.101: \#1 parts b,d,f,h,j only
(g) p.101: \#2 parts b,d,f,h,j only
(h) p.102: \#13 part a only
4. Rigorously prove:
(a) Proposition: Let $X=\{5,6\}$ and $Y=[5,6]$. Then $X \subseteq Y$ but $Y \nsubseteq X$.
(I expect you to use a formal definition of intervals here: $a \in[c, d]$ if and only if $c \leq a \leq d$.)
(b) Proposition: Let $S=\{6 a-15 b \mid a, b \in \mathbf{Z}\}$. Then $S \subseteq 3 \mathbf{Z}$.
