1. Prove rigorously: Let $T=\left\{x \in \mathbf{R} \mid x^{2} \leq x\right\}$. Then $T=[0,1]$.
2. Prove via chain-style proof. At the end of each line, also label in parentheses the specific definition or just "rules of logic" that you used in that line of the proof; we did this in class.
(a) Let A, B, C be sets. Then $A \cap(B \backslash C)=(A \backslash C) \cap B$.
(b) Let A, B, C be sets. Then $(A \cup B) \times C=(A \times C) \cup(B \times C)$.
(c) For all sets $A, B,\left(A \cap B^{c}\right)^{c}=A^{c} \cup B$.

Note the slight variation in wording here; does that affect the proof?
3. Proofs that something equals the empty set often go better by contradiction than by two-part (\subseteq, \supseteq) equality proof or chain-style proof, since statements like "Let $x \in \emptyset$ " or " $x \in \emptyset$ iff..." don't make sense right from the start!

Rigorously prove this proposition, by contradiction: For all sets A, $A \cap \emptyset=\emptyset$.
4. Prove by any meaningful method:
(a) Let A, B be sets. Then $A^{c} \subseteq B$ if and only if $A \backslash B=B^{c}$.
(b) For all sets A, B, C, D, if $C \subseteq A$ and $D \subseteq B$, then $C \cap D \subseteq A \cup B$.
(c) Let A, B, C, and D be sets with A and B disjoint. If $A \cup B \subseteq C \cup D$ and $C \subseteq A$, then $B \subseteq D$.

