Find the requested quantity in each problem; use appropriate units.

1. $A=9 i n^{2}, x=?$?

2. $h=$?? (There is a second right angle at the point marked in bold.)

3. If the area is $924 \mathrm{~cm}^{2}$, what is the perimeter? (There is a right angle at the point marked in bold.)

4. $A=50 \mathrm{~cm}^{2}, h=$??

5. $A=180 m^{2}, b=$??

6. The markings on the sides show that the triangle is isosceles, so we can safely conclude that its height splits its base perfectly in half. That means the base is $2 x$ all the way across.

$$
A=\frac{1}{2}(6)(2 x), \text { so } 9=6 x, \text { and } x=1.5 \text { inches }
$$

2. Because it's a right triangle, we can find its area by using its legs as base and height. Thus, the area is $\frac{1}{2}(6)(8)=24$. Also, because it's a right triangle, we can find the length of the hypotenuse by applying the Pythagorean Theorem: $6^{2}+8^{2}=c^{2}$, or $100=c^{2}$ so c is 10 . Now this 10 cm hypotenuse can be viewed as the base of the triangle, with h the height. We already found the area, so we'll substitute into $A=\frac{1}{2} b h$:

$$
24=\frac{1}{2}(10)(h), \text { so } h=\frac{24}{5}=4.8 \mathrm{~cm}
$$

3. This is somewhat like the problem above. We already know the area and can use 24 as the height with the missing third side as the base, so

$$
924=\frac{1}{2}(b)(24), \quad \text { making } b=77
$$

and then the perimeter must be $51+40+77=168 \mathrm{~cm}$.
4. We'll just substitute into $A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$:

$$
50=\frac{1}{2}(7+13)(h), \quad \text { so that } h=5 \mathrm{~cm} .
$$

5. Again, just substitute into $A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$:

$$
\begin{aligned}
180 & =\frac{1}{2}(b+24)(9) \\
180 & =4.5(b+24) \\
40 & =b+24 \\
b & =16 \mathrm{~m}
\end{aligned}
$$

