Find the measurement of each numbered angle, justifying with a short explanation.
1.

$\ell \| m$
2.

3.

1.
$\angle 1$ measures 60° because it's vertical with the given 60° angle.
$\angle 2$ measures 70° because it's vertical with the given 70° angle.
$\angle 3$ measures 60° because it's alternate interior with $\angle 1$.
(or, because it's corresponding with the given 60° angle)
$\angle 4$ measures 50° because it completes a $\left(180^{\circ}\right)$ triangle with $60^{\circ} \angle 1$ and $70^{\circ} \angle 2$.
$\angle 5$ measures 50° because it's vertical with $\angle 4$.
2.
$\angle 1$ measures 75° : it completes a triangle with the given 50° and with the vertical angle to the given 55° angle (so that vertical angle is also 55°).
$\angle 2$ measures 125° because it's corresponding with the supplement to the given 55° angle (so the supplement measures 125°).
3.
$\angle 1$ measures 95° because it's supplementary (or, it's part of a linear pair) with the given 85° angle.
$\angle 2$ measures 95° because it's alternate interior with $\angle 1$.
$\angle 3$ measures 85° because it's supplementary with $\angle 2$. (Or, because it's corresponding with the given 85° angle.)
$\angle 4$ measures 90° because it's corresponding with an angle at the intersection of p and q, all of which measure 90°.

