
Consider this diagram:

Apply the given information to find a pair of congruent triangles. Use correct notation to tell which two triangles they are and specify the acronym you use, then thoroughly explain how you arrived at your conclusion.

- 1. Assume *nothing* except that ABDE is a rhombus.
- 2. Assume nothing except that $\overrightarrow{FB} \parallel \overrightarrow{EC}$ and $\overrightarrow{BX} \cong \overrightarrow{EY}$.
- 3. Assume *nothing* except that \overline{AE} and \overline{FB} bisect each other.
- 4. Assume nothing except that ACDF is a rectangle and $\overline{EF} \cong \overline{AB}$.
- 5. Assume *nothing* except that $\overrightarrow{FD} \parallel \overrightarrow{AC}$ and X is the midpoint of \overline{AE} .
- 6. Assume nothing except that \overrightarrow{BE} is the perpendicular bisector of \overline{AC} .
- 7. Assume nothing except that $\overline{AB} \cong \overline{AF}$ and \overline{BF} and \overline{AE} bisect each other.
- 8. Assume nothing except that $\angle EXB \cong \angle BYE$ and that \overline{BE} bisects $\angle FBD$.

- 1. $\overline{AB} \cong \overline{BD}$ because they're sides of the rhombus. $\overline{AE} \cong \overline{ED}$ because they're also sides of the rhombus. Side \overline{EB} is shared. So $\triangle ABE \cong \triangle DEB$ by SSS.
- 2. $\overline{BX} \cong \overline{EY}$ because we're told so. $\angle FBE \cong \angle CEB$ because they're alternate interior angles between \overleftarrow{FB} and \overleftarrow{EC} . Side \overline{BE} is shared. So $\triangle XBE \cong \triangle YEB$ by SAS.
- 3. $\overline{AX} \cong \overline{XE}$ because \overline{AE} is bisected. $\overline{FX} \cong \overline{XB}$ because \overline{FB} is also bisected. $\angle FXE \cong \angle AXB$ because they're vertical angles. (So are $\angle FXAand \angle BXE$.) So $\triangle FXE \cong \triangle BXA$ by SAS. (So are $\triangle FXA$ and $\triangle BXE$.)
- 4. $\overline{EF} \cong \overline{AB}$ because we're told so. $\angle FAB \cong \angle AFE$ because they're both right angles (in the rectangle). Side \overline{FA} is shared. So $\triangle AFE \cong \triangle FAB$ by SAS.
- 5. $\overline{AX} \cong \overline{EX}$ because \overline{AE} is bisected. $\angle FXE \cong \angle AXB$ because they're vertical angles. $\angle FEA \cong \angle BAE$ because they're alternate interior between \overrightarrow{FB} and \overrightarrow{EC} . So $\triangle FEX \cong \triangle BAX$ by ASA.
- 6. $\overline{AB} \cong \overline{CB}$ because \overline{AC} is bisected. $\angle ABE \cong \angle CBE$ because they're both right angles (due to perpendicularity). Side \overline{BE} is shared. So $\triangle ABE \cong \triangle CBE$ by SAS.
- 7. $\overline{AB} \cong \overline{AF}$ because we're told so. $\overline{FX} \cong \overline{BX}$ because \overline{BF} is bisected. Side \overline{AX} is shared. So $\triangle AXF \cong \triangle AXB$ by SSS.
- 8. $\angle EXB \cong \angle BYE$ because we're told so. $\angle FBE \cong \angle DBE$ because $\angle FBD$ is bisected. $\angle AEB \cong \angle YEB$ because they're the third angles of the triangles. Side \overline{BE} is shared. $\triangle BEX \cong \triangle BEY$ by ASA.