1. Let $A=(4,5)$ and $B=(6,1)$.
(a) If $T=(0,2)$, find a point U for which $\overleftrightarrow{A B}$ is parallel to $\overleftrightarrow{T U}$.
(b) If $T=(0,2)$, find a point V for which $\overleftrightarrow{A B}$ is perpendicular to $\overleftrightarrow{T V}$
(c) Find a different answer to the previous problem about point V.
2. Let $J=(-5,2)$ and $K=(4,-3)$.
(a) Find a point L for which $\overleftrightarrow{J L} \perp \overleftrightarrow{J K}$ and $J K=J L$.
(b) Find a point N for which $\overleftrightarrow{J N} \perp \overleftrightarrow{J K}$ and $J N=2 J K$.
3. Let $P=(-5,2)$ and $Q=(1,-1)$.
(a) Find a point R so that $\triangle P Q R$ is an isosceles triangle.
(b) Find a point S so that $\triangle P Q S$ is a right triangle.
(c) Find a point T so that $\triangle P Q T$ is an isosceles right triangle.
4. Consider the points $A=(-3,2)$ and $B=(4,1)$.
(a) If $X=(1,6)$, find a point Y so that $A B X Y$ (or $A B Y X$) is a parallelogram.
(b) Find another answer to the question above.
(c) Find two points C and D so that $A B C D$ is a square.
(d) Find two other points that answer the question above.
(e) Find two points Z and W so that $A B Z W$ (or $A B W Z$) is a non-square rhombus.
5. Challenge - $H=(-2,-4), I=(-2,6)$, and $J=(3,-1)$ are three vertices of an isosceles trapezoid HIJK having $\overline{H I}$ as one of its bases. Find the coordinates of the fourth vertex K.

Math 118 - Dr. Miller - Solutions to HW \#21: Slopes

1. (a) There are infinitely many correct answers because the length $T U$ does not matter. Three options "close to" T are $U=(-2,6), U=(2,-2)$, and $U=(4,-6)$.
(b) Again, there are infinitely many correct answers. If we reduce the perpendicular slope to lowest terms $(1 / 2)$ we get an even tighter list: $V=(2,3)$ or $(4,4)$ or $(-2,1)$ or $(-4,0)$ to name a few.
(c) See above.
2. (a) The slope of $\overleftrightarrow{J K}$ is $-5 / 9$, so that of $\overleftrightarrow{J L}$ must be the negative reciprocal, 9/5. To get the distances $J K=J L$, count this slope out just once, as you did in finding the "walk" from J to K in the first place. $L=(0,11)$ and $L=(-10,-7)$ are the only correct answers.
(b) $N=(5,20)$ and $N=(-15,-16)$ are the only correct answers.
3. (a) The slope of $\overleftrightarrow{P Q}$ is $-3 / 6$, so to create an identical distance, simply count out 6 by 3 in any reasonable direction from either of P or Q. Possible answers include the third vertex R at $(-2,8),(1,5)$ or $(-8,-4)$ just to list some of those reachable from P.
(b) Now we're restricted to counting out a "perpendicular slope" only. The only possibilities are $S=(-2,8),(-8,-4),(4,5)$, or $(-2,-7)$.
(c) My choices above satisfy this problem also.
4. (a) Options are $Y=(-6,7),(8,5)$, or $(0,-3)$.
(b) See above.
(c) C and D can either be $(-2,9)$ and $(5,8)$ or else $(-4,-5)$ and $(3,-6)$.
(d) See above.
(e) The slope of $\overleftrightarrow{A B}$ is $-1 / 7$, so the tactic is to count out a slope also using 1 and 7 in such a way as not to create collinear points. Z and W at $(-10,1)$ and $(-3,0)$ is one possibility.
5. $\overline{H J}$ is one of the "off" sides, with a slope of $3 / 5$. The "count" from I to K to create the matching side must also involve 3 and 5 . Trial and error with the shape requires $K=(3,3)$.
