1. <i>[5 pts - 1 each]</i> Circle the m	ost reasonable me	easurement for each	attribute.		
(a) The weight of a butterfl	y:				
$\left(\begin{array}{c}5\ g\end{array}\right)$	500~g	5kg	500~kg		
(b) The temperature in a properly working refrigerator:					
$-50^{o}C$	$-5^{o}C$	$\left(5^{\circ}C\right)$	$50^{o}C$		
(c) The height of Old Main	:	Management of the second			
30~mm	30~cm	(30 m)	30~km		
(d) The volume of your back	kpack/book bag:				
$7~m\ell$	$70~m\ell$	(7ℓ)	70 <i>l</i>		
(e) The width of this page f	from left to right:				
2.1~mm	21~mm	2.1~cm	(21 cm)		
2. [5 pts] Convert 57.9 dam^3 to km^3 ; do not round.					
indo km?	1000 hm ³	0.57x dam3/9	,0000579	km³	
3. [8 pts] Convert 52.83 kilometed 1 mile. Round to the neares $\frac{52.83 \text{ km}^2}{\text{km}} \times \frac{1}{60}$	ters per hour to m t hundredth.	ninutes per mile, giv	ven that 1.6 km equals		
Leins minutes					

4. (a) /10 pts/ A circular cylinder has a height of 24 cm. The diameter of top and bottom is 10 cm. Find its surface area to the nearest tenth, showing clear work.

Top:
$$Hr^2 = H(5)^2 = 78.54$$

Bottom: (same) 78.54

$$C = 2\pi r$$

= $2\pi \cdot 5$
= 31.42

(b) [2 pts] Draw a net for the cylinder.

(c) [2 pts] How many lateral planes of symmetry does it have?

(d) /2 pts/ How many lateral axes of symmetry does it have?

infinitely many

5. [10 pts] The horizontal and vertical distance between adjacent dots in this grid is 1 cm. Find the area of the given shape, to the nearest tenth. Show clear work.

A = tropeyoid
$$\frac{1}{2}(b_1 + b_2)h = \frac{1}{2}(1+3)\cdot 2 = 4$$

B = triangle
$$\frac{1}{2}bh = \frac{1}{2}(2)(2) = 2$$

6. [8 pts] A right triangle is oriented so that it sits on its hypotenuse; i.e., the hypotenuse is horizontal, as shown. If the legs are 16.8 inches and 7.1 inches long, respectively, what is the height h of the triangle to the nearest tenth? Show clear work.

D Thouse

$$A = \frac{1}{2}bh$$

$$= \frac{1}{2}(16.8)(7.1)$$

$$= 59.64$$

$$16.8^{2} + 7.1^{2} = c^{2}$$

 $332.65 = c^{2}$
 $18.2 = c$

$$A = \frac{1}{2}bh$$

 $59.64 = \frac{1}{2}(18.2)h$
 $59.64 = \frac{9.1h}{h = 6.6}$

7. [6 pts - 2 each] Consider the diagram on the board. Use correct notation to name each of the following.

(a) $\angle DIE \cap \angle HID$

(b) $\overline{IJ} \cup \overrightarrow{IG}$

(c) $\overrightarrow{GJ} \cap \angle BIG$

HDI 8. /8 pts/In the diagram on the board, $m(\angle DIE) = 20^{\circ}$, $m(\angle DEI) = 105^{\circ}$, and $m(\angle HPI) =$ 80°. Find the measure of $\angle PHI$, explaining your reasoning verbally.

m(XEDI) = 55° because it completes

AEDI

m(XCDH) = 45° because it is supplementary

to the (80 + 55) 4 HDI.

m(XDHI) = 45° because it is alternate

m(XDHI) = 45° because it is alternate

interior with xCDH.

- 9. /20 pts 2 per characteristic Draw examples of the following; mark all significant features.
 - (a) a quadrilateral that is equilateral but not regular

(b) a concave hexagon and one of its diagonals

(1) Ms orrows (c) an obtuse angle and its vertex

0

(d) a line segment and its perpendicular bisector

(e) a pair of alternate exterior angles

10. [6 pts] How many degrees is the non-reflex angle formed by the hands of a working clock at 11:15? Show work.

11. [6 pts] Is it possible for a convex polygon to have an interior angle total of 53100°?

Justify your response.

$$(n-2) \cdot 180^\circ = 53100^\circ$$

 $n-2=295$
 $n=297$ sides IS Possible.
 $n=297$ sides IS Possible.

- 12. [4 pts 1 each] Classify each statement below as always, sometimes, or never true.
 - (a) A kite is a quadrilateral.

sometimes true

never true

(b) A square is equiangular.

sometimes true

never true

(c) A rhombus is a trapezoid.

always true

sometimes true

never true

(d) An isosceles triangle is obtuse.

always true

(sometimes true

never true

(4,8) and (7,1) (-7,-5) and (-10,2)

14. [6 pts] $\triangle CAT \sim \triangle BUG$ with AC = 4, AT = 8, BG = 15, and BU = 10. Find the length of CT to the nearest tenth. Ш

$$\frac{4}{x} = \frac{10}{15}$$
 $60 = 10x$
 $60 = x = CT$

15. [10 pts] Two objects are similar. Every length in the larger object is 5.2 times that of the smaller one. If the volume of the larger object is 872.4 m³, find the volume of the smaller one, to the nearest tenth. Show clear work.

$$\frac{872.4}{2} = (5.2)^{3}$$

$$\frac{872.4}{2} = 140.608$$

16. [8 pts] In the figure below, assume only that \overline{AB} and \overline{FE} are congruent and parallel. Find a pair of congruent triangles, using correct notation \triangle \cong \triangle , then explain your reasoning for the congruence acronym you used.

10

② XEFX= XABX because they're alternate interior Xs. ① EF = AB is given.

15

17. (a) [2 pts] What is the smallest number of degrees a regular nonagon must be rotated to demonstrate symmetry?

(b) [2 pts] Beginning with a printed capital letter "A," create a figure that has exactly two lines of symmetry.

(c) [2 pts] Draw a figure that has reflectional symmetry, but no other kind of symmetry.

- (d) [2 pts] If a prism has an isosceles trapezoid for a base, how many axes of symmetry does the prism have altogether?
- (e) [2 pts] Name a three-dimensional object that has one longitudinal axis of symmetry and 5 longitudinal planes of symmetry.

regular pentagional pyramid (or prism)

18. [4 pts] Given these views of a three-dimensional block structure, tell how tall each portion of the structure is by writing the heights in the top view positions.

Top View

_		
١	2	
١	(1,2,	3
١	1	

Front View

Side View

