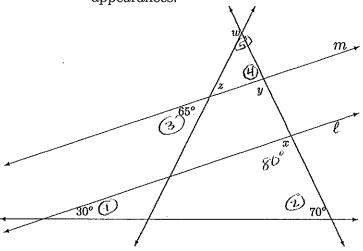


- (a) Among the points shown in the left-hand diagram, circle all possible points C that would make $\angle ABC$ exactly a right angle.
 - (b) Among the points shown in the center diagram, circle all possible points C that would make $\angle ACB$ an obtuse angle.
 - (c) Among the points shown in the right-hand diagram, circle the single point C that would make $\angle BAC$ closest to a zero angle.

•	8	•	•	•	•	•	•	•	•	0	•		6	•
•	•	9 (•	•	•	•	•	•	•	0	0	0	•	O
		•			•	• (0	▶B	0			•		
•	$A \bullet$	•	•	•	e /	100		•	•	• /	10	•	•	•
					•	•	0		•	0	0	•	•	•


2. (a) Find the measurement of the non-reflex angle formed by the hands of a working clock at 4:37. Show clear work; round to the nearest hundredth if needed.

(b) Name two times of day when the hands of a working clock form a 75° angle.

3:30 or 8:30

(3.) In the diagram below, $\ell \parallel m$. Find the measures of the indicated angles. Clearly explain in sentences all necessary computations, using correct $m(\angle _)$ notation throughout. You may mark additional angles if you wish. Do not judge any measurements by appearances.

$$x \times 1, \times 0, 4 \times 3$$
 are in a triangle, so $m(x \times 1) = 80^{\circ}$.

$$xx + xy$$
 are corresponding
 $xx + xy$ are corresponding
 $xx + xy = 80$.
 $xx + xy = 80$.

$$47 + 43$$
 and $\sqrt{2} = 65$