1. For this entire problem, let $U = \{6, 7, 8, 9, 10, 11, 12\}$ be the universal set. Let $A = \{7, 9, 10, 11\}$, $B = \{6, 9, 11\}$, $C = \{8, 10\}$, and $D = \{9, 11, 12\}$. Find the following sets, using correct notation (that includes curly braces).

Work on your own paper - there's no room below.

- (a) \overline{A} or A^c
- (b) \overline{B} or B^c
- (c) $A \cup B$
- (d) $A \cap B$
- (e) $B \cup C$
- (f) $B \cap C$
- (g) $\overline{B} \cap \overline{C}$
- (h) $\overline{(B \cup C)}$

(i) $(A \cup C) \cap D$ (Remember to evaluate what's inside parentheses first.)

- (j) $A \cup (C \cap D)$
- (k) $\overline{A} \cup (B \cap D)$
- (l) A B
- (m) B A
- (n) C D
- (o) $B \times C$
- (p) $C \times B$
- (q) $A \times C$
- (r) $\mathcal{P}(C)$
- (s) $\mathcal{P}(D)$
- (t) four subsets of A that all have different cardinalities
- (u) three subsets of B that all have the same cardinality
- 2. If possible, make up sets satisfying each separate set of conditions below, and show set operation work to confirm that your creations succeed. If any are NOT possible, explain why not.
 - (a) Sets G and H with $5 \in G$ and $G \cap H = \{2\}$
 - (b) Sets L and M that are NOT disjoint and where $(4, \triangle) \in L \times M$, $(4, \heartsuit) \in L \times M$, and $n(L \times M) = 4$
 - (c) Sets S and T where n(S) = 3, n(T) = 4, and $n(S \cup T) = 5$
 - (d) Sets U and V where n(U) = 2, n(V) = 5, and $n(U \setminus V) = 1$