1. [3 pts - 1 each] Identify the hypothesis of each conditional statement below, writing your answer as a complete, stand-alone sentence.
 (a) You can only go out to play if you eat your dinner first.
 \[\text{If you eat dinner, then you can go out to play.} \]
 (b) It's necessary to be at least 16 to get a driver's license.
 \[\text{(You) Get a driver's license.} \]
 (c) Just writing the hypothesis is sufficient to answer these questions.
 \[\text{(You) Just write the hypothesis.} \]

2. [1.5 pts] Rewrite the biconditional statement below as a conjunction of two "if-then" statements: The product \(xy = 0 \) if and only if \(x = 0 \) or \(y = 0 \).
 \[\text{If } xy = 0, \text{ then } x = 0 \text{ or } y = 0; \text{ and if } x = 0 \text{ or } y = 0, \text{ then } xy = 0. \]

3. [5.5 pts] Evaluate the truth value of each statement form below when \(p \) and \(q \) have values that make \(p \rightarrow q \) true but \(p \land q \) false. You may use our in-class/HW shorthand, but show each step (other than negations) separately.
 (a) \(\sim p \rightarrow \sim q \)
 \[\begin{align*}
 T & \rightarrow F \\
 F &
 \end{align*} \]
 (b) \(\sim (q \leftrightarrow p) \)
 \[\begin{align*}
 \sim (T \leftrightarrow F) \\
 \sim F \\
 T
 \end{align*} \]
 (c) \(p \lor q \rightarrow p \leftrightarrow p \)
 \[\begin{align*}
 F \lor T & \rightarrow T \leftrightarrow T \\
 T & \rightarrow F \leftrightarrow T \\
 F & \leftrightarrow T \\
 F &
 \end{align*} \]