Work on the separate sheets provided; attach this question sheet on the front. This exam is worth 100 points.

- 1. [9 pts 3 each] Verbally negate each of the statements below:
 - (a) You can have fries or a salad.
 - (b) If you don't like pizza, you're crazy.
 - (c) Every time it rains, my basement floods.
- 2. (a) [2 pts] Write the converse of "If you don't like pizza, you're crazy."
 (b) [3 pts] Write the contrapositive of "A cat is a mammal."
- 3. [6 pts 2 each] Convert each statement to the form "(quantifier phrase), (quality)":
 - (a) Squares are polygons.
 - (b) If $x \ge y$, then $x^2 \ge y^2$.
 - (c) $x^2 < x$ for some real number x.
- 4. [15 pts 5 each] Symbolically negate each statement below, simplifying your result as fully as possible. SHow intermediate steps to receive full credit.
 - (a) $(p \lor q) \to \neg r$
 - (b) $\forall x \in \mathbf{Q}, \forall y \in \mathbf{Z}, x \leq y$
 - (c) $\exists a \in R, a > 0 \text{ and } a^2 < a$
- 5. [8 pts] Is the statement $(p \lor q) \land (\neg p \to q)$ logically equivalent to $p \to \neg q$? Justify your claim.
- 6. [6 pts] Reduce the statement $(p \to q) \lor \neg (p \land \neg q)$ to the simplest form you can. Show work.
- 7. [4 pts] Find the truth value of " $s \land (t \lor \neg r) \to \neg u$ " when s is true, t is false, and $r \land u$ is true. Show brief work.

continued on back

- 8. [15 pts 2 or 3 each] Classify each statement below as true or false:
 - (a) $0 \in \{x + y \mid x, y \in \mathbb{Z} \text{ and } x^2 = y^2\}$ (b) $4 \in \{x + y \mid x, y \in \mathbb{Z} \text{ and } x^2 = y^2\}$ (c) $1 \in \{x + y \mid x, y \in \mathbb{Z} \text{ and } x^2 = y^2\}$ (d) $\emptyset \in \mathcal{P}(\{1\})$ (e) $\emptyset \subseteq \mathcal{P}(\{1\})$ (f) $\{1\} \subseteq \mathcal{P}(\{1\})$
- 9. [10 pts 3 or 4 each] Let the universal set $U = \{5, 6, 7, 8, 9\}$ and let $A = \{x \in U \mid x > 8\}$ while $B = \{5, 7, 9\}$ and $C = \{6, 7\}$. Use correct notation to find the following sets:
 - (a) $(A \cup C) \cap \overline{B}$
 - (b) $C \setminus B$
 - (c) $C \times B$
- 10. [6 pts] Shade the following set in a three-set Venn diagram. Show intermediate work as needed, but record your final answer in a separate diagram.

$$(A \cap \overline{B}) \cup C$$

- 11. [8 pts 2 or 4 each] Let the index set $I = \mathbf{N}$ and let $A_i = \{-1, 1, i\}$.
 - (a) Find $\bigcap_{i=3}^{5} A_i$. Show work as needed.
 - (b) Find $\bigcup_{i=3}^{5} A_i$. Show work as needed.
 - (c) Find $\cap_I A_i$. Show work as needed.
- 12. [8 pts 4 each] Let the index set $I = \mathbf{R}^+$, the set of positive real numbers, and let $A_i = [-i, i)$.
 - (a) Find $\cup_I A_i$. Show work.
 - (b) Find $\cap_I A_i$. Show work.