All cell phones and watch alarms must be turned OFF.

- 1. [3 pts] Write the contrapositive of "If x > y and y is positive, then $x^2 > y^2$."
- 2. [15 pts 2,3,5 each] Negate each statement below, writing your answer in the same format (i.e., a verbal negation for verbal statements, a symbolic one for symbolic statements).
 - (a) Every hexagon has 6 sides.
 - (b) If x is rational and y is irrational, then x + y is irrational.
 - (c) $\forall x, y \in \mathbf{N}, (x > y \rightarrow x^2 \ge y^2 + 1)$
 - (d) $\forall x \in \mathbf{R}, \exists n \in \mathbf{Z}, (x \ge n \land x n < 1)$
- 3. [4 pts] Find the truth value of the statement " $(q \lor \neg r) \to ((\neg p \land s) \to t)$ " when $p \land q$ is true, $r \to s$ is false, and t is true.
- 4. [6 pts] Determine whether " $(p \lor q) \to \neg q$ " and " $p \lor (\neg q \to q)$ " are logically equivalent; show clear work and state your conclusion, but you need not explain.
- 5. [5 pts 1 each] Let $S = \{1, \{2, 3\}, \{4\}\}$. Classify each statement below as true or false; you need not explain.
 - (a) $1 \in S$
 - (b) $\{2\} \subseteq S$
 - (c) $\{2\} \in \mathcal{P}(S)$
 - (d) $\{\{1\}\} \subseteq \mathcal{P}(S)$
 - (e) $\{\{4\}\} \subseteq \mathcal{P}(S)$
- 6. [4 pts] Let $U = \{1, 2, 3, \dots, 8\}$, $A = \{1, 2, 3, 4, 5\}$, $B = \{8, 7\}$ and $C = \{3, 5, 7\}$. Using correct notation, find $(A \cap B) \cup \overline{C}$.
- 7. [5 pts] In a 3-set Venn diagram, shade $A \cap \overline{(\overline{B} \cup C)}$ (note the double complement). Clearly show your final answer in a separate diagram.
- 8. [8 pts 3, 5 each] Let the index set $I = \mathbf{N}$ and let $A_i = [0, 1/i) \cup \{i\}$.
 - (a) Find $\cap_{i=2}^{4} A_i$.
 - (b) Find $\cup_{i=1}^{\infty} A_i$.
- 9. [8 pts] Prove that $\sum_{i=1}^{n} (2i-1) = n^2$ for all $n \in \mathbf{N}$.

10. [8 pts] Prove that $8^n - 3^n$ is divisible by 5 for all integers $n \ge 0$.

11. 2 pts List the next 4 terms of the recursive sequence given by

$$a_1 = 1, \quad a_2 = 2, \quad a_n = \begin{cases} a_{n-1} + 1 & \text{if } a_{n-1} \text{ is odd} \\ a_{n-1} + a_{n-2} & \text{otherwise} \end{cases}$$

- 12. [8 pts 4 each] Consider the sequence 2, 5, 10, 17,
 - (a) Find both an initial condition and a recurrence relation for this sequence.
 - (b) Find a solution for a_n (that is, a non-recursive formula). Show work, but you need not explain.
- 13. [6 pts] Use induction to prove that $a_n = n(n+1)$ is a solution for the sequence given by $a_1 = 2$ and $a_n = a_{n-1} + 2n$.
- 14. [5 pts] Use any meaningful technique to compute $81 + 87 + 93 + \ldots + 1227$. Show clear work.
- 15. [6 pts 3 each] Tell whether each set of ordered pairs below is a function with domain **N** or not. Explain your responses.
 - (a) $\{(2,4), (3,5), (4,6), \ldots\}$
 - (b) $\{(1,2), (1,3), (1,4), \ldots\}$
- 16. [6 pts 3 each] Tell whether each function below, with given domain and co-domain, is one-to-one or not. Explain your responses.
 - (a) $f: \mathbf{Z} \longrightarrow \mathbf{N}$ via f(x) = |x|
 - (b) $h: \mathbf{R} \longrightarrow \mathbf{R}^+$ via h(x) = 2x
- 17. [6 pts 3 each] Now tell whether each function from Problem 16 above is onto or not. Explain your responses.
- 18. [3 pts] Use the Binomial Theorem to find the numeric coefficient of x^{15} in $(3x-4)^{25}$.
- 19. [12 pts 4 each] How many 5-card hands, drawn from a regular deck of cards have...
 - (a) exactly 3 aces?
 - (b) exactly 3 cards of the same value?
 - (c) either 3 or 4 face cards? (The face cards are the jacks, queens, and kings.)

- 20. [16 pts 4 each] My nephew is making a secret code-word by rearranging the letters of his name: TRAVIS.
 - (a) How many have the letters AT (in that order) or the letters VIS (also in that order) first?
 - (b) How many code-words can he make that will have both vowels together?
 - (c) How many code-words have the vowels separated by at least one other letter?
 - (d) How many code-words have a vowel on each end?
- 21. [6 pts 3 each] For each degree sequence given below, either draw a graph that has that degree sequence, or tell why that is not possible.
 - (a) 3,3,2,2,1
 - (b) 3,3,2,2,0
- 22. [6 pts] Draw the complete graph on 5 vertices, then explain how Euler's Proposition applies to it.
- 23. [3 pts] Is the graph given by $V = \{v_1, v_2, v_3, v_4, v_5\}$ and $E = \{v_1v_2, v_2v_3, v_3v_4, v_4v_1\}$ connected? Explain.
- 24. [5 pts] Are the graphs below isomorphic? Explain.

25. [5 pts] Does the graph below have an Euler trail? Specify one by listing the vertices you traverse in order, or explain why this is not possible.