- 1. (a) You can't have fries and you can't have salad. (The original was of the form "fries \lor salad.")
 - (b) You don't like pizza but/and you're not crazy.
 - (c) Sometimes when it rains, my basement does not flood. (The original was of the form "∀ rain, house floods.")
- 2. (a) If you're crazy, you don't like pizza.(b) If it's not a mammal, then it's not a cat. (OR Non-mammals are not cats.)
- 3. (a) \forall squares S, S is a polygon.
 - (b) $\forall x \ge y, x^2 \ge y^2$.
 - (c) $\exists x \in \mathbf{R}, x^2 < x$. (OR \exists real number $x, x^2 < x$.)
- 4. (a) $(p \lor q) \land r$ (hypothesis and not conclusion), which is $(p \land r) \lor (q \land r)$
 - (b) $\exists x \in \mathbf{Q}, \exists y \in \mathbf{Z}, x > y$ (only the quantifier changes in the "quantifier phrase" part.
 - (c) $\forall a \in R, a \leq 0 \text{ or } a^2 \geq a$
- 5. Method 1: truth table

p	q	$p \vee q$	$\neg p$	$\neg p \rightarrow q$	$(p \lor q) \land (\neg p \to q)$	$\neg q$	$p \rightarrow \neg q$
t	t	t	f	t	t	f	f
t	f	t	f	t	t	t	t
f	t	t	t	t	t	f	t
f	f	f	t	f	f	f	t

 $(p \lor q) \land (\neg p \to q)$ is not logically equivalent to $p \to \neg q$ because their columns in the truth table are not identical.

Method 2: algebra

$$(p \lor q) \land (\neg p \to q) \iff (p \lor q) \land (p \lor q)$$
 (implication is "not hypoth, or concl")
 $\Leftrightarrow (p \lor q)$ ("idempotence")

yet $p \to \neg q \Leftrightarrow \neg p \lor \neg q$, not the same.

$$\begin{array}{ll} (p \to q) \lor \neg (p \land \neg q) & \Leftrightarrow & (p \to q) \lor (\neg p \lor q) \quad (\text{negate the "and"}) \\ & \Leftrightarrow & (\neg p \lor q) \lor (\neg p \lor q) \quad (\text{implication is "not hypoth, or concl"}) \\ & \Leftrightarrow & \neg p \lor q \quad (\text{"idempotence"}) \end{array}$$

7. $r \wedge u$ true means that both r and u must be true. So we get

$$s \wedge (t \vee \neg r) \rightarrow \neg u$$
 "=" true \wedge (false $\vee \neg$ true) $\rightarrow \neg$ true
"=" true \wedge (false \vee false) \rightarrow false
"=" true \wedge false \rightarrow false
"=" false \rightarrow false, which is true.

- 8. (a) true -0 = -2 + 2, a sum of integers whose squares are equal.
 - (b) true -4 = 2 + 2, a sum of integers whose squares are equal.
 - (c) false if $x^2 = y^2$, x must equal $\pm y$, so that x + y = 0 or 2y, making y = 1/2, not an integer.
 - (d) true the empty set is a subset of every set, so it's a member of every power set.
 - (e) true the empty set is a subset of every set.
 - (f) false a subset's elements always belong to the "bigger" set, but the element 1 by itself does not belong to $\mathcal{P}(\{1\})$
- 9. (a) $(A \cup C) \cap \overline{B} = \{6, 7, 9\} \cap \overline{B} = \{6, 7, 9\} \cap \{6, 8\} = \{6\}$ (b) $C \setminus B = \{6, 7\} = \{6\}$ (c) $C \times B = \{(6, 5), (6, 7), (6, 9), (7, 5), (7, 7), (7, 9)\}$

10.

11. (a)
$$A_3 = \{-1, 1, 3\}, A_4 = \{-1, 1, 4\}, \text{ and } A_5 = \{-1, 1, 5\}, \text{ so } \cap_{i=3}^5 A_i = \{-1, 1\}$$

(b) $\cup_{i=3}^5 A_i = \{-1, 1, 3, 4, 5\}$
(c) $\cap_I A_i = \{-1, 1\}$
12. (a) $\cup_I A_i = \mathbf{R} = (-\infty, \infty)$

(b)
$$\cap_I A_i = \{0\}$$