Math 210-310 - Dr. Miller - Shared Homework \#12-S: Non-Algebraic Proportion Methods

1. Use a scaling approach for solving these problems:
(a) Allie bought half a dozen donuts for $\$ 1.80$. How much would 4 and a half dozen donuts cost?
(b) On a map, $1 \frac{1}{2}$ inch corresponds to 12 miles. Two cities are shown as 6 inches apart on the map. How far apart are they in reality?
(c) Jimmy paid $\$ 44$ for 8 pizzas. How much will 20 pizzas cost?
(d) It took Lorenz 8 hours to grade the first term papers for his 20 students. If 2 students drop the class, how long will it take him to grade the second round of term papers in that class?
(e) My recipe calls for 5 cups of flour to 2 cups of sugar. How much flour do I need if I use 7 cups of sugar?
(f) Two thirds of a cup of sugar is needed to make 6 dozen dainty candies. How many dozen candies can be made using 4 cups of sugar?
2. Now use a unit-rate approach for solving the same problems:
(a) Allie bought half a dozen donuts for $\$ 1.80$. How much would 4 and a half dozen donuts cost?
(b) On a map, $1 \frac{1}{2}$ inch corresponds to 12 miles. Two cities are shown as 6 inches apart on the map. How far apart are they in reality?
(c) Jimmy paid $\$ 44$ for 8 pizzas. How much will 20 pizzas cost?
(d) It took Lorenz 8 hours to grade the first term papers for his 20 students. If 2 students drop the class, how long will it take him to grade the second round of term papers in that class?
(e) My recipe calls for 5 cups of flour to 2 cups of sugar. How much flour do I need if I use 7 cups of sugar?
(f) Two thirds of a cup of sugar is needed to make 6 dozen dainty candies. How many dozen candies can be made using 4 cups of sugar?
3. (a) Additive scaling:

$1 / 2$ dozen	$:$	$\$ 1.80$
1 dozen	$:$	$\$ 3.60$
1 dozen	$:$	$\$ 3.60$
1 dozen	$:$	$\$ 3.60$
+1 dozen	$:$	$+\$ 3.60$
$4 \frac{1}{2}$ dozen	costs	$\$ 16.20$

Direct scaling:

$$
\text { (Scale factor is } 4 \frac{1}{2} \div \frac{1}{2}=9 \text {.) }
$$

$1 / 2$ dozen $\quad:$	$\$ 1.80$	
$\downarrow \times 9$		$\times 9 \quad \downarrow$
$4 \frac{1}{2}$ dozen	costs	

(b) Additive scaling: MANY arrangements of scratchwork are possible. Here's one:
$1 \frac{1}{2}$ inches equals 12 miles, so 3 inches equals 24 miles:

$$
\begin{aligned}
& 3 \text { inches } \\
& +\quad 3 \text { inches } \\
& \hline 6 \text { inches }
\end{aligned}: \quad \begin{array}{r}
24 \text { miles } \\
+\quad 24 \text { miles } \\
\hline 48 \text { miles }
\end{array}
$$

Direct scaling:
(c) Additive scaling: MANY arrangements of scratchwork are possible. Here's one:

$\$ 44$
$\$ 44$
$+\quad \$ 22$
$\$ \$ 110$
---:
8 pizzas
$+\quad 4$ pizzas
20 pizzas

Direct scaling:

(Scale factor is $20 \div 8=2.5)$.	
$\$ 44:$	8 pizzas
$\downarrow \times 2.5$	
$\$ 2.5$	
$\$ 110$	$:$

(d) Notice that he will grade just 18 papers in the second round. So we don't want to add the original info about 20 students, but subtract 2 students from that:

8 hours for 20 students means 0.8 hours for 2 students (divide by 10).

8 hours
$-\quad:$
0.8 hours
---:
7.2 hours \quad for \quad18 students

Direct scaling: Remember that we always find the scale factor by dividing FINAL number by initial number, not necessarily bigger by smaller.

$$
\begin{array}{cc}
\text { (Scale factor is } 18 \div 20=0.9 \text {.) } \\
8 \text { hours : } & 20 \text { students } \\
\downarrow \quad \times 0.9 & \\
\hline 72 \text { hours } & : \\
\hline
\end{array}
$$

(e) Additive scaling:

$$
\begin{array}{rcr}
5 \text { cups flour } & : & 2 \text { cups sugar } \\
5 \text { cups flour } & : & 2 \text { cups sugar } \\
5 \text { cups flour } & \text { : } & 2 \text { cups sugar } \\
+\quad 2.5 \text { cups flour } & \text { : } & +1 \text { cup sugar } \\
\hline 17.5 \text { cups flour } & \text { for } & 7 \text { cups sugar }
\end{array}
$$

Direct scaling:

$$
\text { (Scale factor is } 7 \div 2=3.5 \text {.) }
$$

5 cups flour : 2 cups sugar

$$
\downarrow \times 3.5 \quad \times 3.5 \quad \downarrow
$$

17.5 cups flour for 7 cups sugar
(f) Additive scaling:

$$
\begin{array}{rcr}
2 / 3 \text { cup sugar } & : & 6 \text { dozen candies } \\
2 / 3 \text { cup sugar } & : & 6 \text { dozen candies } \\
+2 / 3 \text { cup sugar } & : & +6 \text { dozen candies } \\
\hline 2 \text { cups sugar } & \text { makes } & 18 \text { dozen candies } \\
+2 \text { cups sugar } & : & +18 \text { dozen candies } \\
\hline 4 \text { cups sugar } & \text { makes } & \begin{array}{|c}
36 \text { dozen candies }
\end{array}
\end{array}
$$

Direct scaling:
(Scale factor is $4 \div \frac{2}{3}=6$.)

$$
\begin{array}{rr}
2 / 3 \text { cup sugar } & : \\
\downarrow \times 6 & \times 6 \text { dozen candies } \\
\downarrow
\end{array}
$$

4 cups sugar makes 36 dozen candies
2. (a)

$\frac{1}{2}$ dozen	$:$	$\$ 1.80$
\downarrow	$\times 2$	
1 dozen	$:$	$\times 2 \quad \downarrow$
	$\times 4.50$	
\downarrow		$\times 4.5 \quad \downarrow$
$4 \frac{1}{2}$ dozen	cost	
		$\$ 16.20$

(b)

$$
\begin{array}{lll}
1 \frac{1}{2} \text { inches } & : & 12 \text { miles } \\
\downarrow \div 1 \frac{1}{2} & & \div 1 \frac{1}{2} \quad \downarrow \\
1 \text { inch } & : & \$ 8 \text { miles } \\
\downarrow \times 6 & & \times 6 \quad \downarrow \\
6 \text { inches } & \text { is } & 48 \text { miles }
\end{array}
$$

(c)

$\$ 44$	$:$	8 pizzas	
$\downarrow \div 8$		$\div 8 \quad \downarrow$	
$\$ 5.50$	$:$	1 pizza	
$\downarrow \times 20$		$\times 20 \quad \downarrow$	
		for 110	
	20 pizzas		

(d)

8 hours	:	20 students
$\downarrow \quad \div 20$		$\div 20 \downarrow$
0.4 hours	:	1 student
$\downarrow \times 18$		$\times 18 \downarrow$
7.2 hours	for	18 students
5 cups flour	:	2 cups sugar
$\downarrow \quad \div 2$		$\div 2 \downarrow$
2.5 cups flour	:	1 cup sugar
$\downarrow \quad \times 7$		$\times 7 \downarrow$
17.5 cups flour	for	7 cups sugar
$2 / 3$ cup sugar	:	6 dozen candies
$\downarrow \div 2 / 3$		$\div 2 / 3 \quad \downarrow$
1 cup sugar	:	9 dozen candies
$\downarrow \times 4$		$\times 4 \downarrow$
4 cups sugar	for	36 dozen candies

