- 1. Use a scaling approach for solving these problems:
 - (a) Allie bought half a dozen donuts for \$1.80. How much would 4 and a half dozen donuts cost?
 - (b) On a map, $1\frac{1}{2}$ inch corresponds to 12 miles. Two cities are shown as 6 inches apart on the map. How far apart are they in reality?
 - (c) Jimmy paid \$44 for 8 pizzas. How much will 20 pizzas cost?
 - (d) It took Lorenz 8 hours to grade the first term papers for his 20 students. If 2 students drop the class, how long will it take him to grade the second round of term papers in that class?
 - (e) My recipe calls for 5 cups of flour to 2 cups of sugar. How much flour do I need if I use 7 cups of sugar?
 - (f) Two thirds of a cup of sugar is needed to make 6 dozen dainty candies. How many dozen candies can be made using 4 cups of sugar?
- 2. Now use a unit-rate approach for solving the same problems:
 - (a) Allie bought half a dozen donuts for \$1.80. How much would 4 and a half dozen donuts cost?
 - (b) On a map, $1\frac{1}{2}$ inch corresponds to 12 miles. Two cities are shown as 6 inches apart on the map. How far apart are they in reality?
 - (c) Jimmy paid \$44 for 8 pizzas. How much will 20 pizzas cost?
 - (d) It took Lorenz 8 hours to grade the first term papers for his 20 students. If 2 students drop the class, how long will it take him to grade the second round of term papers in that class?
 - (e) My recipe calls for 5 cups of flour to 2 cups of sugar. How much flour do I need if I use 7 cups of sugar?
 - (f) Two thirds of a cup of sugar is needed to make 6 dozen dainty candies. How many dozen candies can be made using 4 cups of sugar?

1. (a) Additive scaling:

Direct scaling:

	$1/2 \ dozen$:	1.80
	1 dozen	:	\$ 3.60
	$1 \ dozen$:	\$ 3.60
	$1 \ dozen$:	\$ 3.60
	+ 1 dozen	:	+ \$ 3.60
	$4\frac{1}{2} dozen$	costs	\$ 16.20
Direct scaling:	(Scale fact	or is $4\frac{1}{2}$	$\div \frac{1}{2} = 9.)$
	$1/2 \ dozet$	n :	\$ 1.80
	$\downarrow imes 9$		$\times 9 \downarrow$
	$4\frac{1}{2}$ dozen	cost	s \$ 16.20

(b) Additive scaling: MANY arrangements of scratchwork are possible. Here's one:

 $1\frac{1}{2}$ inches equals 12 miles, so 3 inches equals 24 miles:

	$\begin{array}{r} 3 \ inches \\ + \ 3 \ inches \\ \hline 6 \ inches \end{array} :$	+	24miles24miles48miles
Direct scaling:	(Scale factor is $6 \div 1\frac{1}{2} = 4.$)		
	$1\frac{1}{2}$ inches	:	$12 \ miles$
	$\downarrow \times 4$		$\times 4 \downarrow$
	6 inches	:	48 miles

(c) Additive scaling: MANY arrangements of scratchwork are possible. Here's one:

\$ + \$ \$ 1	344 344 3 <u>22</u> 10		pizzas pizzas pizzas pizzas
(Se	cale factor	is 20 \div	8 = 2.5.)
	\$ 44	:	8 pizzas
\downarrow	$\times 2.5$		$\times 2.5 \downarrow$
[\$ 110	:	20 pizzas

(d) Notice that he will grade just 18 papers in the second round. So we don't want to add the original info about 20 students, but subtract 2 students from that:

8 hours for 20 students means 0.8 hours for 2 students (divide by 10).

	8	hours	:	$20 \ students$
_	0.8	hours		– 2 students
	7.2	hours	for	$18 \ students$

Direct scaling: Remember that we always find the scale factor by dividing FINAL number by initial number, not necessarily bigger by smaller.

	(Scale factor is $18 \div 20 = 0.9$.)
	8 hours : 20 students
	$\downarrow imes 0.9 \qquad imes 0.9 \downarrow$
	72. hours : 18 students
(e) Additive scaling:	5 cups flour : 2 cups sugar 5 cups flour : 2 cups sugar 5 cups flour : 2 cups sugar + 2.5 cups flour : + 1 cup sugar
	17.5 cups flour for 7 cups sugar
Direct scaling:	(Scale factor is $7 \div 2 = 3.5$.)
	$5 \ cups \ flour$: $2 \ cups \ sugar$
	\downarrow $\times 3.5$ $\times 3.5$ \downarrow
	17.5 cups flour for 7 cups sugar
(f) Additive scaling:	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Direct scaling:	(Scale factor is $4 \div \frac{2}{3} = 6$.)
	$2/3 \ cup \ sugar$: $6 \ dozen \ candies$
	\downarrow × 6 × 6 \downarrow
	4 cups sugar makes 36 dozen candies
(a)	
	$\frac{1}{2} dozen$: \$ 1.80
	\downarrow $\times 2$ $\times 2$ \downarrow
	1 dozen : \$ 3.60
	$\downarrow \times \ 4.5 \qquad \qquad \times \ 4.5 \downarrow \qquad \qquad$
	$4\frac{1}{2} dozen cost$ $\$ 16.20$

2.

$1\frac{1}{2}$ inches :	$12 \ miles$
$\downarrow \div 1\frac{1}{2}$	$\div 1\frac{1}{2} \downarrow$
1 inch :	\$8 miles
\downarrow $\times 6$	$ imes 6 \downarrow$
6 inches is	48 miles
44 :	$8 \ pizzas$
$\downarrow \div 8$	$\div 8 \downarrow$
5.50 :	1 pizza
\downarrow × 20	$\times 20 \downarrow$
\$ 110 for	20 pizzas
8 hours :	20 students
\downarrow ÷ 20	$\div 20 \downarrow$
0.4 hours :	1 student
\downarrow × 18	$\times 18 \downarrow$
[7.2 hours] for	18 students
$5 \ cups \ flour$:	2 cups sugar
\downarrow $\div 2$	$\div 2 \downarrow$
$2.5 \ cups \ flour$:	1 cup sugar
\downarrow $ imes 7$	$ imes 7$ \downarrow
17.5 cups flour for	7 cups sugar
2/3 cup sugar :	6 dozen candies
\downarrow $\div 2/3$	$\div 2/3 \downarrow$
1 cup sugar :	9 dozen candies
$\downarrow imes 4$	$\times 4 \downarrow$
4 cups sugar for	36 dozen candies

(b)

(c)

(d)

(e)

(f)