1. Make up a Fact Family that uses the given numbers in each fact.
(a) $4,8,12$
(b) $10,2,5$
(c) $6,0,6$
(d) one 6 and two 0 s
(e) 6,1,6
(f) only 1 s
(g) $1,1,2$
2. Write the number sentence having the given numbers in the indicated roles.
(a) 15 and 7 are addends.
(b) 5 is the only number used as an addend.
(c) 17 is the sum and 8 is an addend.
(d) 17 is the minuend and 10 is the subtrahend.
(e) 17 is the difference and 10 is the subtrahend.
(f) 17 is the subtrahend and 10 is the difference.
(g) 12 and 5 are the factors.
(h) 12 is one factor and the product is 36 .
(i) 12 is one factor and the product is 12 .
(j) 12 is one factor and the product is 0 .
(k) 3 is a factor and a product.
(l) 15 is the quotient and 3 is the divisor.
(m) 15 is the dividend and 3 is the divisor.
(n) 15 is the divisor and 3 is the quotient.
(o) 15 is a dividend and a quotient.
(p) 12 is the divisor and the quotient is 0 .
3. If possible, write a WHOLE NUMBER number sentence having the given qualities. If not possible, explain why.
(a) One addend is twice as large as the other.
(b) The sum is 6 times as large as one addend.
(c) The sum is 0 and the addends are natural numbers.
(d) The sum is 0 .
(e) The subtrahend and difference are equal.
(f) The difference is one more than the minuend.
(g) The difference is twice as large as the subtrahend.
(h) One factor is 5 more than the other.
(i) One factor is five more than the product.
(j) 1 is the product, but it is not a factor.
(k) 0 is the dividend.
(l) 0 is the divisor.
$\underline{\text { Math } 210 \text { - Dr. Miller - Solutions to HW \#16: Number Sentence Terminology }}$
4. (a) $4+8=12 \quad 8+4=12 \quad 12-8=4 \quad 12-4=8$
(b) $2 \times 5=10 \quad 5 \times 2=10 \quad 10 \div 5=2 \quad 10 \div 2=5$
(c) $6+0=6 \quad 0+6=6 \quad 6-0=6 \quad 6-6=0$
(d) $0 \times 6=0 \quad 6 \times 0=0 \quad 0 \div 6=0 \quad(0 \div 0=6$ is nonsense! Don't write it.)
(e) $6 \times 1=6 \quad 1 \times 6=6 \quad 6 \div 6=1 \quad 6 \div 1=6$
(f) $1 \times 1=1 \quad 1 \div 1=1$
(g) $1+1=2 \quad 2-1=1$
5. (a) $15+7=22$
(b) An addition sentence MUST show two addends, so 5 is used twice: $5+5=10$.
(c) $8+9=17$
(d) $17-10=7$
(e) $27-10=17$
(f) $27=17=10$
(g) $12 \times 5=60$
(h) $12 \times 3=36$
(i) $12 \times 1=12$
(j) $12 \times 0=0$
(k) $3 \times 1=3$
(l) $45 \div 3=15$
(m) $15 \div 3=5$
(n) $45 \div 15=3$
(o) $15 \div 1=15$
(p) $0 \div 12=0$
6. (a) $5+10=15$ is one example. There are many others.
(b) $5+25=30$ is one example. There are many others.
(c) Not possible. Natural numbers are all larger than 0. Adding such number together gives a sum that is even greater.
(d) $0+0=0-$ now we can do it.
(e) $12-6=6$ is one example. There are many others.
(f) Not possible. The minuend is being decreased by a whole number, so you cannot end up with an answer that's larger than what you started with.
(g) $12-4=8$ is one example. There are many others.
(h) $4 \times 9=36$ is one example. There are many others.
(i) $5 \times 0=0$ is the only option - did you get this one?
(j) Not possible. The only way to write 1 as a product of WHOLE numbers (not fractions) is as $1 \times 1=1$, which isn't permitted here.
(k) $0 \div 3=0$ is one example. There are many others.
(l) Not possible: "__ $\div 0$ " never makes sense no matter what number you put in the blank.
