Five methods can be used to compare fractions. They're demonstrated below on $\frac{2}{10}$ and $\frac{3}{4}$, from most elementary to most sophisticated:

1. Draw pictures in IDENTICAL wholes: (This is useful only for small denominators and numerators.)

$\frac{3}{4}$ shades more OF THE WHOLE, so $\frac{3}{4}>\frac{2}{10}$.
2. Compare to familiar or benchmark numbers: (Younger pupils often compare to $0,1 / 2$, or 1 . Older learners might use $1 / 3,2 / 3$, and $1 / 4,3 / 4$ also.)
$\frac{2}{10}$ is close to 0 while $\frac{3}{4}$ is close to 1 , so $\frac{3}{4}>\frac{2}{10}$.
...or...
$\frac{2}{10}$ is less than $\frac{1}{2}$ but $\frac{3}{4}$ is more than $\frac{1}{2}$, so $\frac{3}{4}>\frac{2}{10}$.
3. Reason about the meanings of the numerators AND denominators: (The conclusions MUST agree.)
$\frac{3}{4}$ keeps more pieces than $\frac{2}{10}$ does (3 pieces vs. 2, so 3/4 seems like more) and $\frac{3}{4}$ has larger pieces (4ths are fatter than 10ths, so again 3/4 seems like more), so $\frac{3}{4}>\frac{2}{10}$.
4. Rewrite using common denominators: (Then just compare numerators.)
$\frac{2}{10}=\frac{4}{20}$ and $\frac{3}{4}=\frac{15}{20}$ and 15 of something is more than 4 of those same things, so $\frac{3}{4}>\frac{2}{10}$.
5. Cross-multiply: (This is a short-cut for Method \#4.)

$$
\begin{array}{rl}
& \frac{2}{10} \\
\text { (ws. } & \frac{3}{4} \\
2 \cdot 4 & 3 \cdot 10 \\
8 & <30 \\
\text { means } \\
\quad \frac{2}{10} & <\frac{3}{4} .
\end{array}
$$

