Math 210 - Dr. Miller - Final Exam, Version \#1-4/29/09

1. Consider this problem: The average age of the 48 employees at Cooper Inc is 51 years. Six people retire; their ages are 69, 68, 62, 62, 64, and 65. What is the average age of the remaining employees?
(a) [3 pts] List three problem-solving strategies that you could try in solving it.
(b) [9 pts] Solve the problem, showing clear work. You need not explain.
2. [4 pts] Eldon has saved $\$ 48.60$ toward a new game, which is $2 / 3$ of what it costs. What is the price of the game? Show clear work, but you need not explain.
3. (a) [3 pts] Find the first five terms of a geometric sequence whose third term is 180 and whose common ratio is $1 / 3$.
(b) [3 pts] Find the 298th term of this sequence: 140, 143, 146, \ldots.
4. [8 pts] Demonstrate Gauss' Trick in computing this sum:

$$
526+535+544+\cdots+2209
$$

5. [6 pts] Find a formula for the nth term of this sequence: $3,6,11,18, \ldots$. Show clear work.
6. For this entire problem, let $U=\{1,2,3 \ldots, 20\}$, and let $A=\{x \mid x$ is a multiple of 6$\}$, $B=\{1,2,7,18,19\}$, and $C=\{1,19,20\}$.
(a) [2 pts] Rewrite A using correct listing notation.
(b) [6 pts] How many subsets does B have? Use correct notation to list two of them having different cardinalities.
(c) [4 pts] Use correct listing notation to find $\bar{B} \cap C$.
(d) [2 pts] Use correct notation to write a single element of $C \times B$.
(e) [6 pts - 2 each] Classify each statement below as true or false:
i. $\emptyset \in A$
ii. $2 \in B \cup C$
iii. $\{6\} \subseteq A$
7. [8 pts - 2 each] Fill in each blank with the correctly spelled term.
(a) In the number sentence, $8-5=3$, the number 5 is called the
while the answer, 3 , is called the
(b) In the number sentence $2+9=11$, the numbers 2 and 9 are called the
\qquad .
(c) In the number sentence $42 \div 6=7$, the number 42 is called the
8. [4 pts] Circle the computation that cannot be performed, then clearly explain why, referring to definitions or models that we have studied.

$$
0 \div 8 \quad 8 \div 0
$$

9. [6 pts - 2 each] Write the complete name (for instance, " \qquad Property of Multiplication") of the property best illustrated in each number sentence below. Spell correctly.
(a) $3 \cdot(2+5)+(4 \cdot 6) \cdot 7=3 \cdot(2+5)+4 \cdot(6 \cdot 7)$
(b) $3 \cdot(2+5)+(4 \cdot 6) \cdot 7=0+3 \cdot(2+5)+(4 \cdot 6) \cdot 7$
(c) $3 \cdot(2+5)+(4 \cdot 6) \cdot 7=3 \cdot(2+5)+7 \cdot(4 \cdot 6)$
10. (a) [3 pts] List the three numbers that precede $501_{\text {seven }}$ in base seven.
(b) [3 pts] List the three numbers that follow $8 T 9_{\text {twelve }}$ in base twelve.
11. [4 pts] Convert: $5014_{\text {twenty-three }}=\longrightarrow$ ten.
12. [5 pts] Demonstrate "balancing subtraction" to compute $7654_{\text {sixteen }}-213 C_{\text {sixteen }}$ entirely in base sixteen.
13. [8 pts] Compute entirely in base five: $3004_{\text {five }} \div 24_{\text {five }}$. Show clear work.
14. [8 pts] Multiply entirely in base eight using your choice of algorithm: $562_{\text {eight }} \times 435_{\text {eight }}$.
15. (a) [3 pts] Write 629 as a Roman numeral.
(b) [4 pts] Create the smallest possible legal Roman numeral using all of these digits: C, C, C, D, I, X, X.
16. [6 pts] Find all values of the digit d in the 6 -digit number $528,3 d 4$ that will make the number divisible by 12. Justify your response by demonstrating appropriate divisibility tests.
17. (a) [3 pts] List all the factors of 100 .
(b) [4 pts] True or false: There is a whole number that is both a factor of 100 and also a multiple of 7 . Justify your response with an appropriate argument.
18. [5 pts] Demonstrate the Prime Number Test in determining whether 739 is prime. State your conclusion.
19. [8 pts] Find four factors of the number $81 \cdot 35^{2} \cdot 11$ that are between 200 and 400 .
20. (a) [6 pts] Use any technique to find the GCD of 375 and 435 . Show clear work.
(b) [6 pts] Now find the LCM of 375 and 435 using any technique. Show clear work.
