HW handouts in this course don't leave room for your work, so always work on your own paper, **leave room for MY feedback comments**, and staple the question sheet to the front when finished.

- 1. What can be said if anything about the truth value of the statement form $(P \leftrightarrow Q) \rightarrow (P \lor R)$ in each case below? Describe your reasoning in a sentence or two. (Do NOT make full truth tables.)
 - (a) P and R are both false.
 - (b) P and Q have different truth values.
 - (c) $P \leftrightarrow Q$ is true but $P \rightarrow R$ is false.
- 2. Again consider the statement form $(P \leftrightarrow Q) \rightarrow (P \lor R)$. If $P \land Q$ is true, is there a fixed truth value for R that will make the above statement form false, or do we not have enough information? Explain your reasoning.
- 3. Negate the statements below; use simplest logical form (SLF) when meaningful. (See below.)
 - (a) $\sin A = 1$ and $\cos A \le 00$.
 - (b) Either of 2x + y = 0 or $y \ge 3$ implies that $x \le 1.5$.
 - (c) If x or y is even, then xy is even.
 - (d) $\frac{b^2}{a} \in \mathbf{Z}$ if and only if $\frac{b}{a} \in \mathbf{Z}$.
 - (e) $n > n^2$ if 0 < n < 1.
 - (f) $\sin A$ and $\cos A$ have the same sign only if A is in Quadrant I or in Quadrant III.
 - (g) There exists a function f for which, if x > 0, then f(x) < 0 or f(x) > 1.
 - (h) There are real numbers x and y where y is negative and $x^2 + y^2 = 1$.
 - (i) For each $x \in \mathbf{R}$, there is $y \in R$ for which xy > 1 and y is irrational.
 - (j) For every $\epsilon > 0$, there is a number $\delta > 0$ satisfying $\epsilon + \delta < 0$.
 - (*) SLF means we:
 - Avoid double negatives like "is not non-zero." (That becomes "IS zero.")
 - Avoid generic "it's not the case that..." lead-in phrases.
 - Fully negate "and/or" statements using de Morgan's Laws.
 - Fully negate quantifiers: never keep half-negations like "there does not exist..." or "not all...."
- 4. For each conditional statement below, do two things:
 - (I) Identify its hypothesis, written as a stand-alone sentence (that is, with no conditional words remaining: for example, "Silver is a cat," not "<u>if</u> Silver is a cat.")
 - (II) Write the indicated variation (converse, inverse, contrapositve) using the form required.
 - (a) If a and b have different signs, then ab < 0. For (II), write the converse in if-then form.
 - (b) ab being positive implies that |a + b| = |a| + |b|. For (II), write the inverse in if-then form.
 - (c) a can only be a multiple of b^2 if a is a multiple of b. For (II), write the contrapositive in if-then form.
 - (d) It is necessary that c be negative for a^4b^2c to be negative. For (II), write the converse using "only if."
 - (e) |a + b| = |a| + |b| only if a and b have the same signs. For (II), write the inverse using "sufficient."
 - (f) a^3 is positive if a is positive. For (II), write the contrapositive using a "trailing if."