1. Rigorously prove the following statements directly.
(a) Let $x, y, z \in \mathbf{Z}$. If all of them are odd, then $y^{2}-x z$ is even.
(b) Let $a, b, c \in \mathbf{Z}$. If $a b \mid c$, then $a \mid c$.
(c) Let $x, y \in \mathbf{Z}$. If $15 \mid x$ and $10 \mid y$, then $5 \mid x^{2}+3 y$.
2. Proof by Cases is based on this logical equivalence: If a disjuntion among hypotheses can lead to a particular conclusion, then it must be that each hypothesis alone is capable of leading to that conclusion. That is,

$$
(p \vee q) \rightarrow r \equiv(p \rightarrow r) \wedge(q \rightarrow r)
$$

(a) Create a standard order truth table to confirm this equivalence, and point out in a sentence what feature of the table actually shows that these statement forms are equivalent.
(b) USE the equivalence to rewrite this statement about integers "If x is even or y is even, then $x y$ is even" in equivalent form. (Your answer here should be a verbal, conditional statement.)
(c) USE the equivalence to rewrite this statement about integers "If n has a remainder of 1 or 3 on division by 4 , then n^{2} has a remainder of 1 ."
3. Rigorously prove the following statements (directly).
(a) If $c, d \in \mathbf{Z}$ have the same parity, then $c+d$ is even.
(b) If $x, y \in \mathbf{R}$ with $|x+3|=4$ and $|y-2|=1$, then $x+y<10$.
4. Rigorously prove the following statement. You should expect to use "without loss of generality."

Let $x, y \in \mathbf{Z}$. If x and y have different non-zero remainders on division by 3 , then $3 \mid(x+y)$.

