1. "Or Conclusion"-style proof is based on this equivalence: If either of two options is desired as a conclusion, then if one of them does NOT occur, the other MUST (the other conclusion has to "pick up the slack"). That is,

$$
p \rightarrow(q \vee r) \equiv(p \wedge(\sim q)) \rightarrow r
$$

(a) Create a standard order truth table to confirm this equivalence, and point out in a sentence what feature of the table actually shows that these statement forms are equivalent.
(b) USE the equivalence to rewrite this statement about integers "If $x y$ is even, then x is even or y is even" in equivalent form.
(c) USE the equivalence to rewrite this statement about integers "If n^{2} has a remainder of 1 , then n has a remainder of 1 or 3 on division by $4 . "$
2. Write a rigorous proof of each statement below. You must choose the appropriate proof style to suit each statement's form.
(a) Let $p, q, r \in \mathbf{Z}$. If exactly one of these is even, then $p+q+r$ is also even.
(b) Let $x \in \mathbf{Z}$. If 3 does not divide x (that is, $3 \nmid x$), then 3 divides $x^{2}-1$.
(c) Let $x, y, z \in \mathbf{Z}$. If at least one of them is divisible by 7 , then $x y z$ is too.
(d) Let $a, b, c \in \mathbf{Z}$. If $a \mid(2 b+c)$, then $a \nmid b$ or $a \mid c$.
(e) If $x, y \in \mathbf{Q}$, then $2 x-y \in \mathbf{Q}$ also.
(f) Let $x, y \in \mathbf{R}$ with $y \neq 0$. If $\frac{5+x}{y}$ is rational, then x is rational or y is irrational.
3. Prove by contrapositive:
(a) Prop. - A circle has center $(2,0)$. If $(5,1)$ is not inside the circle, then $(-1,-1)$ is also not inside the circle.
(b) Prop. - Let $a, b \in \mathbf{Z}$. If $7 \not\langle a b$, then $7 \not\langle a$ and $7 \nless b$.
(c) Prop. - Let $x \in \mathbf{R} \backslash\{0\}$. If $x+\frac{1}{x} \geq 2$, then x is positive.
4. Prove by "or conclusion"-style first, then prove by contrapositive: Let $x, y \in \mathbf{Z}$. If $x+y$ is odd, then x is odd or y is odd.

