1. I forgot to give you a computational problem about the Division Algorithm, so here it is now:

Find the quotient q and remainder r promised by the Division Algorithm for each setting below. Then separately rewrite the results in equality-form $a=b q+r$.
(a) Dividend $a=73$ and divisor $b=6$ (The divisor is the number you're dividing BY.)
(b) Dividend $a=6$ and divisor $b=73$
(c) Dividend $a=-6$ and divisor $b=73$
(d) Dividend $a=-73$ and divisor $b=6$
(e) Dividend $a=15$ and divisor $b=3$
(f) Dividend $a=-15$ and divisor $b=15$
(g) Dividend $a=-20$ and divisor $b=3$
2. Choose either proof by contrapositive (ctp) or proof by contradiction (X) to prove each proposition below. Be rigorous!
(a) Prop. - There is no smallest odd integer.
(b) Prop. - Let a be a real number. If $(a+2)(a-3)<0$, then $a<3$.
(c) Prop. - $\sqrt[3]{23}$ is irrational.
(d) Prop. $-\sqrt{45}$ is irrational.
(e) Prop. - Let $x, y \in \mathbf{Z}$. If $x \neq y$, then the square of their sum cannot equal 4 times their product.
(f) Prop. - Let $c \in \mathbf{R}$. If the graphs of $x^{2}+y^{2}=1$ and $y=x+c$ intersect, then $c<5$.
3. Write a 2-part (2-direction) proof for the following biconditional statements. Remember that you can use a different style on each direction.
(a) Let $b \in \mathbf{Z}^{+}$. Then $b \mid(b-3)$ if and only if $b \mid 3$.
(b) Let $m, n \in \mathbf{Z}$. The expression $5(m+n)+8$ is odd if and only if m and n have different parity.

