1. Write a chain-style proof of the following: Let $a, b, c \in \mathbf{Z}$ with $c \neq 0$. Then $a c \mid b c$ if and only if $a \mid b$.
2. Rigorously prove the following quantified statements either directly or constructively.
(a) Proposition: Every number of the form $3(2-r)$ where $r \in \mathbf{Q}$ is also of the form $\frac{5 t}{2}$ where $t \in \mathbf{Q}$.
(b) Prop.: For every point on the graph of $x^{2}+y^{2}=9$, the sum of its coordinates is less than 8 .
(Be careful not to tangle the function variables x and y with variables to use as proof variables.)
(c) Proposition: The function $f(x)=\frac{x^{3}+1}{x+1}+x$ is even (when $x \neq \pm 1$).
(We'll review Monday, but our text defines odd function on p.52; it is a "for all" definition. Even function is similar and can be found all over the web or in your pre-calculus/calculus texts.)
(d) Proposition: There exists a prime number x for which $x+2, x+3, x+4$, and $x+5$ are composite.
(e) Proposition: There is a set of 10 consecutive integers containing 2 separate pairs of twin primes.
(Twin primes are prime numbers that differ by 2.)
(f) Proposition: There exists a rational number s where $30<s^{2}<35$ and $180<s^{3}<190$.
3. Prove via an ALTERNATIVE style other than direct/constructive: Any pair of real numbers whose sum exceeds 300 must involve at least one number over 150.
4. Rigorously prove the following. Be careful with the multiple NTS lines that should occur in proving these mixed-logic statements.
(a) Proposition: For each $n \in \mathbf{Z}^{+}$, there exists an $M \in \mathbf{Z}^{+}$such that $\frac{1}{M-1}<\frac{1}{3 n}$.
(b) Proposition: There exist $a, b \in \mathbf{Q}$ such that, for all $x \in \mathbf{R}, \frac{a x}{2}+\frac{b-6}{7}=x$.
