1. (a) Prove that \(T = \{8n - 7 \mid n \in \mathbb{Z}\} \) is not a subset of \(3\mathbb{Z} \).
 (b) Prove that \(T \) is a subset of the set \(S \) of odd integers.

2. Let \(M = \{10a + 15b + 18c \mid a, b, c \in \mathbb{Z}\} \). Prove that \(M = \mathbb{Z} \).

3. Let \(A, B, \) and \(C \) be sets with universal set \(U \). Prove:
 (a) \((A \setminus B) \setminus C = A \setminus (B \cup C)\)
 (b) \((A \cap C) \times B = (A \times B) \cap (C \times B)\)
 (c) \(A^c \times B^c \subseteq (A \times B)^c\), but that these sets are not equal.

4. Let \(A \) and \(B \) be sets. Prove that \([\mathcal{P}(A) \cup \mathcal{P}(B)] \subseteq \mathcal{P}(A \cup B)\) but that these sets are not equal.