1. Complete these definitional tasks from the textbook:
(a) Problem \#2 (a)-(c) on p. 161
(b) Also Problem \#2 (a)-(c) on p. 172
(c) Problem \#8 (a)-(c) on p.173, with brief explanation for each response
2. Rigorously prove the following:
(a) Let $L=\{(a, b) \in \mathbf{R} \times \mathbf{R} \mid 3 a+4 b=12\}$. Then $\mathbf{R}=\operatorname{Dom}(L)$.
(b) Let F, G, and H be relations on a set A. If $F^{-1} \subseteq G$, then $G^{-1} \nsubseteq H$ or $F \subseteq H$.
3. Rigorously prove whether R in each part below is/is not reflexive, symmetric, and/or transitive. (So, yes, you are writing a proof about each of the three properties every time.)
(a) On Z, $x R y$ if $5 \mid 4 x+y$.
(b) On $\mathbf{R}, x R y$ if $x=y$ or $x y=1$.
(c) On $\mathcal{P}(\mathbf{Z}), A R B$ if $2 \notin A \cup B$.
(d) On $\mathbf{Z} \times \mathbf{Z},(a, b) R(x, y)$ if $a x=-b y$.

Careful: We aren't relating an individual element x to another individual element y, but rather relating an entire ordered pair (a, b) to another one (x, y). Transitivity brings in a third pair.
4. Let $A=\{1,2,3,4,5\}$. For each part below, give a set B and an arrow diagram ($\neq \operatorname{digraph})$ for f with the specified qualities. You need not explain. The parts are separate, so answers will vary. Pay close attention to whether I am asking for B to be the domain or the codomain.
(a) f is a relation from A to B, but not a function.
(b) f is a one-to-one function from B to A, but not onto.
(c) f is a function from A onto B.
5. For each relation below, identify its features by circling as instructed. No proof is required.

- Circle whether the relation is a function or not, with the given domain and codomain.
- For those that are functions, also circle whether it is onto/not AND one-to-one/not.
(a) $f: \mathbf{R} \longrightarrow \mathbf{R}$ via $f(x)=\sin x$

Not a function \quad Function that is : onto not onto $1-1$ not 1-1
(b) $f: \mathbf{R} \longrightarrow[-1,1]$ via $f(x)=\sin x$

Not a function \quad Function that is : onto not onto $1-1$ not $1-1$
(c) $f: \mathbf{R} \longrightarrow \mathbf{R}$ via $f(x)=$ an angle whose cosine equals x Not a function \quad Function that is : onto not onto $1-1$ not 1-1
(d) $f: \mathbf{R} \longrightarrow \mathbf{R}$ via $f(x)=e^{x}$

Not a function \quad Function that is : onto not onto 1-1 not 1-1
(e) $f: \mathbf{R} \longrightarrow \mathbf{R}$ via $f(x)=$ an exponent needed on e to create x as a result Not a function \quad Function that is : onto not onto 1-1 not 1-1

