- 1. Complete these definitional tasks from the textbook:
 - (a) Problem #2 (a)-(c) on p. 161
 - (b) Also Problem #2 (a)-(c) on p. 172
 - (c) Problem #8 (a)-(c) on p.173, with brief explanation for each response
- 2. Rigorously prove the following:
 - (a) Let $L = \{(a, b) \in \mathbf{R} \times \mathbf{R} \mid 3a + 4b = 12\}$. Then $\mathbf{R} = Dom(L)$.
 - (b) Let F, G, and H be relations on a set A. If $F^{-1} \subseteq G$, then $G^{-1} \not\subseteq H$ or $F \subseteq H$.
- 3. Rigorously prove whether R in each part below is/is not reflexive, symmetric, and/or transitive. (So, yes, you are writing a proof about each of the three properties every time.)
 - (a) On **Z**, xRy if 5 | 4x + y.
 - (b) On \mathbf{R} , xRy if x = y or xy = 1.
 - (c) On $\mathcal{P}(\mathbf{Z})$, ARB if $2 \notin A \cup B$.
 - (d) On $\mathbf{Z} \times \mathbf{Z}$, (a, b)R(x, y) if ax = -by.

Careful: We aren't relating an individual element x to another individual element y, but rather relating an entire ordered pair (a, b) to another one (x, y). Transitivity brings in a third pair.

- 4. Let $A = \{1, 2, 3, 4, 5\}$. For each part below, give a set B and an arrow diagram (\neq digraph) for f with the specified qualities. You need not explain. The parts are separate, so answers will vary. Pay close attention to whether I am asking for B to be the domain or the codomain.
 - (a) f is a relation from A to B, but not a function.
 - (b) f is a one-to-one function from B to A, but not onto.
 - (c) f is a function from A onto B.

(continued on back)

- 5. For each relation below, identify its features by circling as instructed. No proof is required.
 - Circle whether the relation \underline{is} a function or \underline{not} , with the given domain and codomain.
 - For those that are functions, also circle whether it is onto/not AND one-to-one/not.

(a)	$f: \mathbf{R} \longrightarrow \mathbf{R}$ via $f(x) = \sin x$						
	Not a function	$Function \ that \ is \ : \ onto$	not onto	1 - 1	$not \ 1-1$		
(b)	$f: \mathbf{R} \longrightarrow [-1, 1]$ via $f(x) = \sin x$						
	Not a function	$Function \ that \ is \ : \ onto$	not onto	1 - 1	$not \ 1-1$		
(c)	$f: \mathbf{R} \longrightarrow \mathbf{R}$ via $f(x) =$ an angle whose cosine equals x						
	Not a function	Function that is : onto	not onto	1 - 1	$not \ 1-1$		
(d)	$f: \mathbf{R} \longrightarrow \mathbf{R}$ via $f(x) = e^x$						
	Not a function	Function that is : onto	not onto	1 - 1	$not \ 1-1$		
(e)	$f: \mathbf{R} \longrightarrow \mathbf{R}$ via $f(x) =$ an exponent is	needed on e to create x as a	result				

Not a function	Function that is : onto	$not \ onto$	1 - 1	$not \ 1-1$
----------------	-------------------------	--------------	-------	-------------