1. (a) Prove that $f:(0,2] \longrightarrow[1, \infty)$ via $f(x)=\frac{2}{x}$ is a function.
(b) Prove that $f: \mathbf{R} \longrightarrow\{-1,1\}$ is NOT a function when

$$
f(x)=\left\{\begin{aligned}
-1 & \text { if } x \text { is negative } \\
1 & \text { if } x \text { is positive }
\end{aligned}\right.
$$

(c) Prove that $f: \mathbf{Z} \longrightarrow\{2,3,0\}$ is NOT a function when

$$
f(x)= \begin{cases}2 & \text { if } 2 \mid x \\ 3 & \text { if } 3 \mid x \\ 0 & \text { if neither } 2 \text { nor } 3 \text { divides } x\end{cases}
$$

2. [8 pts - 4 each] Prove that the following functions ARE onto:
(a) $f: \mathcal{P}(\{1,2,3, \ldots, 100\}) \backslash\{\emptyset\} \longrightarrow\{1,2,3, \ldots, 100\}$ via $f(X)=$ the largest member of X
(b) $f: \mathbf{R} \longrightarrow[-16, \infty)$ via $f(x)=x^{2}-8 x$
3. [4 pts - 2 each] Prove that the following functions are NOT onto:
(a) $f: \mathcal{P}(\{1,2,3, \ldots, 100\}) \longrightarrow \mathcal{P}(\{1,2,3, \ldots, 100\})$ via $f(X)=X \cup\{1,2\}$
(b) $f:(0,1] \longrightarrow[1, \infty)$ via $f(x)=\frac{3}{x}$
4. [4 pts - 2 each] Prove that the following functions are one-to-one:
(a) $f:(0,2] \longrightarrow(0, \infty)$ via $f(x)=\frac{2}{\sqrt{x}}$
(b) $f: \mathbf{R}^{+} \longrightarrow \mathbf{R}$ via $f(x)=3 x-8-\frac{1}{x}$
5. [4 pts - 2 each] Prove that the following functions are NOT one-to-one:
(a) $f: \mathcal{P}(\{1,2,3, \ldots, 100\}) \longrightarrow \mathcal{P}(\{1,2,3, \ldots, 100\})$ via $f(X)=X \cap\{1,2\}$
(b) $f: \mathbf{R} \longrightarrow[-16, \infty)$ via $f(x)=x^{2}-8 x$
