Prove the following via mathematical induction:

1. $\prod_{i=1}^{n}(2 i-1)=\frac{(2 n)!}{n!2^{n}}$ for all $n \in \mathbf{Z}^{+}$
2. For all integers $n \geq 2$, the sum $\sum_{i=2}^{n+1} i \cdot 2^{i}=n \cdot 2^{n+2}$.
3. For all integers $n \geq 0$, the product $\prod_{i=0}^{n}\left(\frac{1}{3 i+1} \cdot \frac{1}{3 i+2} \cdot \frac{1}{3 i+3}\right)=\frac{1}{(3(n+1))!}$
4. For every integer $n \geq 2$, we have $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{(n-1) n}=1-\frac{1}{n}$.
(You should NOT rewrite this formula to use Σ or Π, but you SHOULD review from Discrete Math how we interpet and work with a summation that has been written in expanded form, as this one has.)
5. $1^{2}-2^{2}+3^{2}-\cdots+(-1)^{n+1} n^{2}=\frac{(-1)^{n+1} n(n+1)}{2}$ for all $n \in \mathbf{Z}^{+}$
6. $7 \mid\left(3^{2 n}-2^{n}\right)$ for all $n \in \mathbf{Z}^{+} \cup\{0\}$
7. $9 \mid\left(4^{3 n}-1\right)$ for all integers $n \geq \underline{?}$, where you determine the correct "base case"
8. $15 \mid\left(14^{2 n-1}+1\right)$ for all integers $n \geq$? , where you determine the correct "base case"
9. $6 n+8 \leq 7 n$ for all integers $n \geq ?$, where you determine the correct "base case"
10. $3^{n}+100 \leq 4^{n}$ for all integers $n \geq \underline{?}$, where you determine the correct "base case"
