Prove the following via mathematical induction:

1.
$$\prod_{i=1}^{n} (2i-1) = \frac{(2n)!}{n!2^n}$$
 for all $n \in \mathbf{Z}^+$

2. For all integers $n \ge 2$, the sum $\sum_{i=2}^{n+1} i \cdot 2^i = n \cdot 2^{n+2}$.

- 3. For all integers $n \ge 0$, the product $\prod_{i=0}^{n} \left(\frac{1}{3i+1} \cdot \frac{1}{3i+2} \cdot \frac{1}{3i+3} \right) = \frac{1}{(3(n+1))!}$
- 4. For every integer $n \ge 2$, we have $\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{(n-1)n} = 1 \frac{1}{n}$.

(You should NOT rewrite this formula to use Σ or Π , but you SHOULD review from Discrete Math how we interpet and work with a summation that has been written in expanded form, as this one has.)

- 5. $1^2 2^2 + 3^2 \dots + (-1)^{n+1} n^2 = \frac{(-1)^{n+1} n(n+1)}{2}$ for all $n \in \mathbf{Z}^+$ 6. $7 \mid (3^{2n} - 2^n)$ for all $n \in \mathbf{Z}^+ \cup \{0\}$
- 7. 9 | $(4^{3n} 1)$ for all integers $n \ge \underline{?}$, where you determine the correct "base case"
- 8. 15 | $(14^{2n-1}+1)$ for all integers $n \geq \underline{?}$, where you determine the correct "base case"
- 9. $6n + 8 \le 7n$ for all integers $n \ge \underline{?}$, where you determine the correct "base case"
- 10. $3^n + 100 \le 4^n$ for all integers $n \ge \underline{?}$, where you determine the correct "base case"