
Math 235 - Dr. Miller - HW #10, Spring 2024 - Due by 4pm on Friday, Apr. 12, 2024

Prove the following via mathematical induction:
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4. For every integer n ≥ 2, we have
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(You should NOT rewrite this formula to use Σ or Π, but you SHOULD review from Discrete Math
how we interpet and work with a summation that has been written in expanded form, as this one has.)

5. 12 − 22 + 32 − · · ·+ (−1)n+1
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for all n ∈ Z+

6. 7 | (32n − 2n) for all n ∈ Z+ ∪ {0}

7. 9 | (43n − 1) for all integers n ≥ ? , where you determine the correct “base case”

8. 15 | (142n−1 + 1) for all integers n ≥ ? , where you determine the correct “base case”

9. 6n + 8 ≤ 7n for all integers n ≥ ? , where you determine the correct “base case”

10. 3n + 100 ≤ 4n for all integers n ≥ ? , where you determine the correct “base case”


