Refer to our in-class activity about rephrasing and negating implications to complete this assignment. It is due Wednesday, Sept. 14, 2011. Please work on a separate sheet of paper.

1. Rewrite each statement below in grammatically correct “if-then” form.
 (a) f can only be differentiable if it is also continuous.
 If f is differentiable, then it is also continuous.
 (b) f failing to be differentiable is a necessary condition for f not to be continuous.
 If f is not continuous, then f fails to be differentiable.
 (c) θ being in Quadrant I is sufficient for $\sin \theta$ to be positive.
 If θ is in Quadrant I, then $\sin \theta$ is positive.
 (d) θ lies on the x-axis only if $\sin \theta = 0$.
 If θ lies on the x-axis, then $\sin \theta = 0$.
 (e) Only if $\tan \theta$ is undefined can θ lie on the y-axis.
 If θ lies on the y-axis, then $\tan \theta$ is undefined.
 (f) A sufficient condition for $\cos \theta$ to be positive is that θ is in Quadrant IV.
 If θ is in Quadrant IV, then $\cos \theta$ is positive.
 (g) $\sin \theta$ and $\cos \theta$ both being negative is necessary for θ to be in Quadrant III.
 If θ is in Quadrant III, then $\sin \theta$ and $\cos \theta$ are both negative.
 (h) $\sin \theta$ and $\tan \theta$ having opposite signs implies that θ is in Quadrant II or III.
 If $\sin \theta$ and $\tan \theta$ have opposite signs, then θ is in Quadrant II or III.

2. Refer to your answers to Problem #1 to write the negation of each statement. Phrase your responses in the simplest language possible, and use deMorgan’s Laws where possible.
 (a) f can only be differentiable if it is also continuous.
 Negation: f is differentiable, but it is not also continuous.
 (b) f failing to be differentiable is a necessary condition for f not to be continuous.
 Negation: f is not continuous, but it is differentiable.
 (c) θ being in Quadrant I is sufficient for $\sin \theta$ to be positive.
 Negation 1: θ is in Quadrant I, but $\sin \theta$ is not positive.
 (The opposite of “positive” is not plain “negative.” It’s “negative or zero.” It’s okay, then, to use the shorter phrase “not positive.”)
 Negation 2: θ is in Quadrant I, but $\sin \theta \leq 0$.
 (Because “positive” means “greater than 0,” we can use symbols to condense the writing even more.)
 (d) θ lies on the x-axis only if $\sin \theta = 0$.
 Negation: θ lies on the x-axis, but $\sin \theta \neq 0$.
 (e) Only if $\tan \theta$ is undefined can θ lie on the y-axis.
 Negation: θ lies on the y-axis and $\tan \theta$ is defined.
 (f) A sufficient condition for $\cos \theta$ to be positive is that θ is in Quadrant IV.
 Negation 1: θ is in Quadrant IV, but $\cos \theta$ is not positive.
 Negation 2: θ is in Quadrant IV, but $\cos \theta \leq 0$.
 (g) $\sin \theta$ and $\cos \theta$ both being negative is necessary for θ to be in Quadrant III.
 Negation: θ is in Quadrant III, but $\sin \theta$ and $\cos \theta$ aren’t both negative.
 (This “and” isn’t a logical “and” that joins two STATEMENTS, so it doesn’t become an “or” upon negation.)
 (Also beware that “aren’t both” means something different from “both aren’t.”)
 (h) $\sin \theta$ and $\tan \theta$ having opposite signs implies that θ is in Quadrant II or III.
 Negation: $\sin \theta$ and $\tan \theta$ have opposite signs, but θ isn’t in Quadrant II nor is it in Quadrant III.

3. Rework Problem #20d-g on page 48 with deMorgan’s Laws in mind.
 These are textbook problems, so I won’t publish the solutions.