Imitate our earlier template to write a PMI proof that $11 + 19 + 27 + \cdots + (8n - 5) = 4n^2 - n - 3$ for all ntegers $n \ge (???)$ (where you determine a correct "base case").
Proof - (Introduction)
(Basis Step)
("IHOP")
(Inductive Step)
(Conclusion)

 $continued\ on\ back$

Again imit determine	ate our template t a correct Base Cas	so prove via PMI t se.)	hat $15 \mid (14^{2n})$	$^{-3}+1)$ for all	integers $n \ge $ _	<u>(???)</u> . (You must
Proof - (I	ntroduction)						
(Basis Ste	ер)						
("IHOP"))						
(Inductive	e Step)						
(Conclusi	on)						