- 1. Let $A = \{1, 2, 3, 4, 5\}$. For each part below, give a codomain B and an arrow diagram (\neq digraph) for f with the specified qualities. Give a 1-sentence explanation in each part. The parts are separate, so answers will vary.
 - (a) f is a relation from A to B, but not a function

(b) f is a one-to-one function from A to B, but not onto

(c) f is onto B

- 2. (a) Make up a set of ordered pairs that IS a function from $A = \{a, b, c, d\}$ to A but is NOT onto. Explain in a sentence how you can tell.
 - (b) Choose a codomain B (use roster-set notation to specify what your set B is), then make up a set of ordered pairs that IS a function from $A = \{a, b, c, d\}$ to B and IS onto, but is NOT one-to-one. Explain in a sentence how you can tell.

- 3. For each attempted relation, circle the correct $\operatorname{response}(s)$:
 - Whether the relation is a function or not with the given domain and codomain.
 - For those that are functions, whether each is onto or not AND one-to-one or not.

(a) $f: \mathbf{R} \longrightarrow \mathbf{R}$ via $f(x) = \sin x$				
Not a function	$Function \ that \ is \ : \ onto$	not onto	1 - 1	$not \ 1-1$
(b) $f: \mathbf{R} \longrightarrow [-1, 1]$ via $f(x) = \sin x$				
(b) $f: \mathbf{R} \longrightarrow [-1, 1]$ via $f(x) = \sin x$ Not a function	Function that is : onto	not onto	1 - 1	$not \ 1 - 1$
(c) $f: \mathbf{R} \longrightarrow \mathbf{R}$ via $f(x)$ = an angle whose cosine equals x				
Not a function	$Function \ that \ is \ : \ onto$	$not \ onto$	1 - 1	$not \ 1-1$
(d) $f: [-1,1] \longrightarrow [0,\pi]$ via $f(x) =$ an angle whose cosine equals x				
Not a function	Function that is : onto	not onto	1 - 1	$not \ 1-1$
v				
(e) $f: \mathbf{R} \longrightarrow \mathbf{R}$ via $f(x) = \tan x$				
Not a function	Function that is : onto	$not \ onto$	1 - 1	$not \ 1-1$
(f) $f: (-\frac{\pi}{2}, \frac{\pi}{2}) \longrightarrow [-1, 1]$ via $f(x) = \tan x$	e			
Not a function Not	Function that is : onto	not onto	1 - 1	$not \ 1 - 1$
(g) $f: \mathbf{R} \longrightarrow \mathbf{R}$ via $f(x) = e^x$				
Not a function	$Function \ that \ is \ : \ onto$	$not \ onto$	1 - 1	$not \ 1-1$
(h) $f: \mathbf{R}^+ \longrightarrow (1, \infty)$ via $f(x) = e^x$				
(ii) f . It f (i, ∞) via $f(x) = c$ Not a function	Function that is : onto	not onto	1 - 1	$not \ 1 - 1$
(i) $f: \mathbf{R} \longrightarrow \mathbf{R}$ via $f(x) =$ an exponent needed on e to create x as a result				
Not a function	$Function \ that \ is \ : \ onto$	not onto	1 - 1	$not \ 1-1$
(j) $f: [1,\infty) \longrightarrow [0,\infty)$ via $f(x) =$ an exponent needed on e to create x as a result				
(J) $f: [1, \infty) \longrightarrow [0, \infty)$ via $f(x) = \text{an exp}$ Not a function	Function that is $:$ onto	not onto	1 - 1	$not \ 1 - 1$
				1