1. Make up examples of sets A, B, and C satisfying the following conditions.
(a) $A \in B, B \in C$, and $A \subseteq C$.
(b) $A \in \mathcal{P}(\mathbf{Q}), B \subseteq \mathcal{P}(\mathbf{Q})$, and $|A|=|B|=3$
2. Consider these sets: $X=\{1,\{2\}, 3,\{4\}\}, Y=\{1,2,\{1,2\}\}, W=\{\{1\},\{2\}, 1,2\}$, and $V=\{\emptyset,\{1\}\}$.
(a) Using correct notation, determine $\mathcal{P}(V)$.
(b) Using correct notation, determine $X \backslash W$.
(c) Using correct notation, determine $\mathcal{P}(Y) \cap W$.
3. For each collection of sets A_{i} and index set I, find $\cup_{i \in I} A_{i}$ and $\cap_{i \in I} A_{i}$. Show work, but you need not prove.
(a) $A_{i}=\left\{i^{2}\right\}, I=\mathbf{Z}$
(b) $A_{i}=\left[-\frac{1}{n}, \frac{1}{n}\right] \cup\left[1-\frac{1}{n}, 1+\frac{1}{n}\right], I=\mathbf{N}$
4. Make up a collection of distinct sets A_{i} for which $\cup_{i \in \mathbf{N}} A_{i}=[0,2]$ and $\cap_{i \in \mathbf{N}} A_{i}=\{0\}$.
5. Determine via a completed truth table whether $(P \vee \sim Q) \wedge P$ is logically equivalent to $\sim(P \Longrightarrow Q)$. Clearly state your conclusion.
6. Rewrite each statement below entirely in symbolic form:
(a) Every negative real number is less than its own square.
(b) There are natural numbers x and y for which $x-y$ and $x+y$ have different signs.
(c) If x is even, then x^{2} is a multiple of 4 .
7. Verbally restate $\# 6 \mathrm{c}$ using the phrase "only if."
8. Symbolically negate each of the following, expressing your response in simplest form.
(a) $\forall x \in(0, \infty), \exists y \in \mathbf{R} \ni y^{2}<x$
(b) $\forall x \in \mathbf{R}, x<0$ or $\sqrt{x} \geq 0$
(c) $\exists x, y \in Z \ni x>y \Longrightarrow x^{2}>y^{2}$
9. Prove using mathematical induction: $\left(1+\frac{1}{1}\right) \cdot\left(1+\frac{1}{2}\right) \cdots\left(1+\frac{1}{n}\right)=n+1$ for all natural numbers $n \geq 2$.
