- 1. Make up examples of sets A, B, and C satisfying the following conditions.
 - (a) A ∈ B, B ∈ C, and A ⊆ C.
 (b) A ∈ P(Q), B ⊂ P(Q), and |A| = |B| = 3
- 2. Consider these sets: $X = \{1, \{2\}, 3, \{4\}\}, Y = \{1, 2, \{1, 2\}\}, W = \{\{1\}, \{2\}, 1, 2\}, \text{ and } V = \{\emptyset, \{1\}\}.$
 - (a) Using correct notation, determine $\mathcal{P}(V)$.
 - (b) Using correct notation, determine $X \setminus W$.
 - (c) Using correct notation, determine $\mathcal{P}(Y) \cap W$.
- 3. For each collection of sets A_i and index set I, find $\bigcup_{i \in I} A_i$ and $\bigcap_{i \in I} A_i$. Show work, but you need not prove.
 - (a) $A_i = \{i^2\}, I = \mathbf{Z}$
 - (b) $A_i = \left[-\frac{1}{n}, \frac{1}{n}\right] \cup \left[1 \frac{1}{n}, 1 + \frac{1}{n}\right], I = \mathbf{N}$
- 4. Make up a collection of distinct sets A_i for which $\bigcup_{i \in \mathbb{N}} A_i = [0, 2]$ and $\bigcap_{i \in \mathbb{N}} A_i = \{0\}$.
- 5. Determine via a completed truth table whether $(P \lor \sim Q) \land P$ is logically equivalent to $\sim (P \Longrightarrow Q)$. Clearly state your conclusion.
- 6. Rewrite each statement below entirely in symbolic form:
 - (a) Every negative real number is less than its own square.
 - (b) There are natural numbers x and y for which x y and x + y have different signs.
 - (c) If x is even, then x^2 is a multiple of 4.
- 7. Verbally restate #6c using the phrase "only if."
- 8. Symbolically negate each of the following, expressing your response in simplest form.
 - (a) $\forall x \in (0, \infty), \exists y \in \mathbf{R} \ni y^2 < x$

- (b) $\forall x \in \mathbf{R}, x < 0 \text{ or } \sqrt{x} \ge 0$ (c) $\exists x, y \in Z \ni x > y \Longrightarrow x^2 > y^2$
- 9. Prove using mathematical induction: $(1 + \frac{1}{1}) \cdot (1 + \frac{1}{2}) \cdots (1 + \frac{1}{n}) = n + 1$ for all natural numbers $n \ge 2$.