Follow directions carefully; work in the space provided. This in-class part of the exam is worth 85 points.

- There are 3 full proofs. Each is marked with [P]. There are also 3 launches, each marked [La].
 - 1. [15 pts 5 each] Precisely negate each statement below. Don't worry about whether the statements are true or not.
 - (a) $x^2 5x + 6 \ge 0$ only if $x \le -2$ or $x \ge 3$.

(b) y = 7, and $x^2 = 9$ if |x| = 3.

(c) There exists $n \in \mathbf{Z}$ where nx > 1 for all $x \in \mathbf{R}^+$.

- 2. (a) [2 pts] Write the logical equivalence governing proof by cases.
 - (b) [2 pts] Write the logical equivalence governing two-part proof (of biconditional statements).

3. [12 pts] [**P**] Use the formal definition of < to write a rigorous direct proof of the statement below. (I'll give you the definition, for a deduction.)

Proposition: Let $p, q, x, y \in \mathbf{R}$. If p < q and x < y, then p + x < q + y.

4. [12 pts] [P] Prove rigorously, using direct proof. (I'll give a hint, for a deduction.)

Let $x, y \in \mathbb{Z}$ have the same remainder on division by 3. If that remainder is not 0, then 3|(xy-1).

5. [12 pts] [P] Prove by any meaningful style. (Surprise: \geq algebra allowed, but for a deduction.)

Proposition: Let $t \in \mathbf{R}$. If $|t| \ge 5$, then $2t + 8 \neq 0$.

(Remember that formal < definition is NEVER required for concrete numbers.)

- 6. [16 pts 8 each] Consider this Proposition: Let $x, y \in \mathbb{Z}$. If xy is even, then x is even or y is even.
 - (a) **[La]** Write the launch, up to and including one meaningful sentence BEYOND the NTS line, of a proof by contrapositive. **Do NOT complete the proof.**

(b) **[La]** Write the launch, up to and including one meaningful sentence BEYOND the NTS line, of a proof by "or conclusion" style. **Do NOT complete the proof.**

- 7. Consider this Proposition: Let $m \in \mathbf{R}$, and let $f(x) = \arctan x$ and $g(x) = mx \frac{\pi}{2}$. The graphs of f and g DON'T intersect if and only if m = 0.
 - (a) [2 pts] Ignoring the universal hypothesis for now, write the "if" direction in unchanged order.

(b) [La] [8 pts] Including the universal hypothesis, write the launch, up to and including one meaningful sentence BEYOND the NTS line, of a proof by contradiction for the "if" direction. Do NOT complete the proof.

8. [4 $\it pts$] Formally state the Fundamental Theorem of Arithmetic (FTA).