Follow directions carefully; work in the space provided. This in-class part of the exam is worth 85 points.
There are 3 full proofs. Each is marked with [P]. There are also 3 launches, each marked [La].

1. [15 pts - 5 each] Precisely negate each statement below. Don't worry about whether the statements are true or not.
(a) $x^{2}-5 x+6 \geq 0$ only if $x \leq-2$ or $x \geq 3$.
(b) $y=7$, and $x^{2}=9$ if $|x|=3$.
(c) There exists $n \in \mathbf{Z}$ where $n x>1$ for all $x \in \mathbf{R}^{+}$.
2. (a) [2 pts] Write the logical equivalence governing proof by cases.
(b) [2 pts] Write the logical equivalence governing two-part proof (of biconditional statements).
3. [12 pts] [\mathbf{P}] Use the formal definition of $<$ to write a rigorous direct proof of the statement below. (I'll give you the definition, for a deduction.)

Proposition: Let $p, q, x, y \in \mathbf{R}$. If $p<q$ and $x<y$, then $p+x<q+y$.
4. [12 pts] [P] Prove rigorously, using direct proof. (I'll give a hint, for a deduction.)

Let $x, y \in \mathbf{Z}$ have the same remainder on division by 3 . If that remainder is not 0 , then $3 \mid(x y-1)$.
5. [12 pts] [P] Prove by any meaningful style. (Surprise: \geq algebra allowed, but for a deduction.)

Proposition: Let $t \in \mathbf{R}$. If $|t| \geq 5$, then $2 t+8 \neq 0$.
(Remember that formal < definition is NEVER required for concrete numbers.)
6. [16 pts - 8 each] Consider this Proposition: Let $x, y \in \mathbf{Z}$. If $x y$ is even, then x is even or y is even.
(a) [La] Write the launch, up to and including one meaningful sentence BEYOND the NTS line, of a proof by contrapositive. Do NOT complete the proof.
(b) [La] Write the launch, up to and including one meaningful sentence BEYOND the NTS line, of a proof by "or conclusion" style. Do NOT complete the proof.
7. Consider this Proposition: Let $m \in \mathbf{R}$, and let $f(x)=\arctan x$ and $g(x)=m x-\frac{\pi}{2}$. The graphs of f and $g D O N^{\prime} T$ intersect if and only if $m=0$.
(a) [2 pts] Ignoring the universal hypothesis for now, write the "if" direction in unchanged order.
(b) [La] [8 pts] Including the universal hypothesis, write the launch, up to and including one meaningful sentence BEYOND the NTS line, of a proof by contradiction for the "if" direction. Do NOT complete the proof.
8. [4 pts] Formally state the Fundamental Theorem of Arithmetic (FTA).

