Math 235 - Dr. Miller - Exam \#2a - 10/29/03
This portion of the exam is worth 47 points.

1. [4 pts] Identify the full hypothesis and conclusion of each statement below:
(a) A group is abelian only if its Cayley table is symmetric.
(b) Every square is a parallelogram.
2. [3 pts] Let x and y be natural numbers. If you wished to prove the following statement by contrapositive, what would you assume, and what would you need to show? If x and y are both odd, then $x y>2$.
3. [4 pts] Illustrate the definition of the term "divides" in confirming or refuting each of the following statements.
(a) 6 is a multiple of -24 .
(b) 7 is a divisor of 0 .
4. [10 pts] Prove that $x^{2}-3$ is even if and only if x is odd.
5. [10 pts] Prove that if $x+y$ is odd, then x and y are of different parity.
6. [8 pts] Prove that if $a \mid b$ and $a \mid c$, then $a \mid(b+c)$.
7. [8 pts] Prove that if $2 \mid x$, then $x^{2} \equiv 0 \bmod 4$.
8. [3 pts] Make up a statement that is vacuously true, then tell how you know.
9. [2 pts] Name two numbers that are congruent modulo 15, telling how you know.
10. [4 pts] Consider the following proof:

Let x and y both be rational. Then $x=\frac{m}{n}$ and $y=\frac{p}{q}$ for some integers m, n, p, q where $n q \neq 0$. Then $x-y=\frac{m q-n p}{n q}$, which is rational. What result has been proved?
4. [4 pts] lemma reassemblage
5. [10 pts] set proof \#1
6. [10 pts] set proof \#2
7. [10 pts] divides proof
8. [10 pts] congruence proof

