1. [12 pts] Prove: The quotient $\frac{p}{q}$ of any nonzero rational number p and any irrational number q is irrational.
2. [12 pts] Explain thoroughly why there exists a number that is irrational and strictly between 0 and $1 / 2$.
3. [8 pts] Disprove: The quotient of two irrational numbers is irrational.
4. [8 pts] Disprove: If $x, y \in \mathbf{R} \backslash\{0\}$ with $x>y$, then $1 / x<1 / y$.
5. [20 pts - 4 each] Let $f: A \longrightarrow B$ be a relation. Circle the best response to complete each statement below.
(a) " $f(x)=f(y) \Longrightarrow x=y$ " means that f is \ldots
a function not a function one-to-one not one-to-one onto not onto
(b) " $\forall b \in B, \exists a \in A$ such that $(a, b) \in f$ " means that f is \ldots
a function not a function one-to-one not one-to-one onto not onto
(c)"The graph of f fails the Vertical Line Test" means that f is ...
a function not a function one-to-one not one-to-one onto not onto
(d) " $1 / 2 \in A$ and $f(1 / 2) \neq f(2 / 4)$ " means that f is \ldots
a function not a function one-to-one not one-to-one onto not onto
(e) " $3 \in B$ and $\nexists a \in A$ with $f(a)=3$ " means that f is \ldots
a function not a function one-to-one not one-to-one onto not onto
6. [20 pts - 10 each] Make up a function $f: \mathbf{R} \longrightarrow \mathbf{R}$ that is ...
(a) not onto - justify your claim
(b) not one-to-one - justify your claim
7. [20 pts] Prove carefully that the function $f(x)=1 / x$ is a bijection from $[1, \infty)$ to $(0,1]$.
