Math 235 - Dr. Miller - Final Exam - 12/8/03
All cell phones and pagers must be turned OFF. This exam is worth 150 points.

1. [6 pts] Make up sets A, B, and C for which $A \in B, C \in \mathcal{P}(A \times B)$, and $|A|=|B|=|C|=2$.
2. [10 pts] Determine $\cap_{i \in I} A_{i}$ and $\cup_{i \in I} A_{i}$ when $A_{i}=\left\{\frac{1}{i}\right\} \cup\left(2-\frac{1}{i}, 3+\frac{1}{i}\right.$] with index set $I=\mathbf{N}$.
3. [6 pts] Negate the following statement, writing your answer in simplest symbolic form.

$$
\forall x \in \mathbf{R}, \exists y, z \in \mathbf{N} \text { such that } y>x \Longrightarrow(y z \leq x z \text { or } x>z)
$$

4. [6 pts] Fill in each blank with a correct natural number, then explain how the definition of the specified concept justifies your response:
(a) $24 \mid$
(b) $116 \equiv$ \qquad $\bmod 5$
5. [8 pts-2 each] Let $f: A \longrightarrow B$ be a relation. Circle the best response to complete each statement.
(a) " $x=y \Longrightarrow f(x)=f(y)$ " means that f is \ldots
a function not a function one-to-one not one-to-one onto not onto
(b) " $3 \in B$ and $\exists a_{1} \neq a_{2} \in A$ with $f\left(a_{1}\right)=f\left(a_{2}\right)=3$ " means that f is \ldots
a function not a function one-to-one not one-to-one onto not onto
(c) " $2 \in A$ and $\nexists b \in B$ with $f(2)=b$ " means that f is...
a function not a function one-to-one not one-to-one onto not onto
(d) "Every element of B occurs as a second coordinate in F " means that f is ...
a function not a function one-to-one not one-to-one onto not onto
6. [12 pts - 4 each] Disprove each statement:
(a) $\forall x, y \in \mathbf{R}, x<y \Longrightarrow x^{2}<y^{2}$.
(b) Every infinite set is uncountable.
(c) The quotient of any two rational numbers is rational.
7. (a) [10 pts] Prove by any method: $x+y$ is even only if x and y have the same parity.
(b) [2 pts] What type of proof did you use above?
8. [10 pts] Prove: If $A \subseteq B$, then $A \cup B=B$.
9. [15 pts] Prove: $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$.
10. [15 pts] Prove: $x^{2} \equiv 1 \bmod 3$ if and only if $x \equiv 1 \operatorname{or} 2 \bmod 3$.
11. [15 pts] Prove: The sum of any rational number p and irrational number q is irrational.
12. [15 pts] Prove: $\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{n(n+1)}=\frac{n-1}{2(n+1)}$ for all natural numbers $n \geq 2$.
13. [20 pts] Create a bijection from $[-5,4]$ to $[16,28]$; prove that your function truly is a bijection.
