Prepare by studying these topics, in conjunction with all course materials and reading. Studying together is a plus.

<u>Non-Proof Tasks</u>: Be familiar with set names $\mathbf{Z}, \mathbf{Z}^+, \mathbf{Z}^-$, similar variations for \mathbf{Q}, \mathbf{R} ; also be clear about intervals.

- 1. Identify hypothesis, conclusion in conditionals using: if-then, trailing if, only if. Write contrapositives.
- 2. Recognize "if" vs "only if" direction in biconditional statements, and choice of \Leftarrow vs \Rightarrow .
- 3. Negate: conditional, and/or, for all, there exists, greater/less/equal/3-way inequalities.
- 4. Identify remainders when we divide by a specific number; use them to create cases in proofs.
- 5. State FORMAL defns: rational, even, odd, divides, $A \subseteq B$, $A \not\subseteq B$, $A \cup B$, $A \cap B$, $A \setminus B$, $A \times B$, A^c , $n\mathbf{Z}$, $\mathcal{P}(S)$, domain, range, reflexive, symmetric, transitive, function, onto, one-to-one.
 - (a) Formal definitions use variables, VERBAL quantifiers, buffer words, and universal hypotheses.
- 6. Know the different synonyms within divisibility: divides, factor, multiple, divisor, divisible by.
- 7. Formally state these theorems: Division Algorithm, FTA, PMI, PSI, WOP.
- 8. Write the logical equivalences governing proof by: cases, "or conclusion"-style, proof by ctp, 2-part.
- 9. Create or analyze sets of ordered pairs or digraphs to have/lack different combinations of the reflexive, symmetric, transitive properties. Prepare to justify beyond just stating the formal definition.
- 10. Create or analyze sets of ordered pairs or arrow diagrams to be/not be functions, one-to-one, and/or onto. Prepare to justify beyond just stating the formal definition.

Partial Proof Tasks: "Launches" There will likely be several problems like this.

- 1. Only START a proof by giving three pieces of info: assumptions, NTS, and ONE additional sentence.
 - (a) I will specify whether you're to go one sentence beyond a first, second, or even third NTS.
- $2.\,$ I may ask you to do so using MY choice or allow YOURS among these styles/ types of statements:
 - (a) Conditional statements: Direct (including cases), by contrapositive, or by "or conclusion" style.
 - (b) Any statement: by contradiction (so remember how to negate EVERYTHING)
 - (c) "For all" proofs, constructive "there exists" proofs
 - i. For \exists proof, you can write "Consider t" LITERALLY as your assumption and then move on.
 - (d) A subsetness, set equality, not-a-subset proof, or set identity (two-part or "chain-style")
 - (e) The SEPARATE directions of a biconditional statement directly, by ctp, or by contradictioni. Remember: I refer to these as "if direction" and "only if direction," rather than using notation.
 - (f) A uniqueness proof; also a disproof of any statement
 - (g) A proof of reflexive/symmetric/transitive properties, of one-to-one/onto/function
- 3. Given a "proof" launch, name the kind of proof attempted or incorrect. I'll give options to choose from.
- 4. Statements to launch may be about unfamiliar concepts, but don't panic these are NOT full proofs!

Proof Tasks: Some problems require you to use MY choice of proof type; others may be left to YOUR choice.

- 1. Remember that your NTS line or use of definitions can help you continue when stuck.
- 2. Styles may end up mixed now, as in our RST, one-to-one, onto proofs and disproofs.
 - (a) We've also seen instances where a proof by cases has ONE case that leads to a contradiction.
 - (b) Remember that in such cases I'll be generous about multiple NTS.
- 3. Be able to navigate all these proof styles/types of statements:
 - (a) Direct, cases (including "wlog"), "or conclusion," contrapositive, contradiction, 2-part
 - (b) Quantifier proofs: "for all," constructive "there exists," both quantifiers mixed, DISPROOF
 - i. In a constructive "there exists" proof, your candidate might be a concrete value vs formula.
 - (c) Subset/not/= set proofs, set identities (two-part or chain-style) using \cup , \cap , \setminus , \times , complement.
 - (d) General set proofs using \subseteq , $\not\subseteq$, =, \cup , \cap , \setminus , \times , complement, power set.
 - (e) Proofs, disproofs: reflexive, symmetric, transitive, function, one-to-one, onto.
- 4. Proofs can include the following concepts (but not limited to these):
 - (a) Parity, rationality, remainders, divisibility, other concepts we've used in this class
 - (b) Algebra/pre-calc such as equation/inequality solving, equations of lines or circles, functions, etc.
 - (c) Math terms, concepts from other courses or settings: fractions, decimals, geometry, e^x and $\ln x$, etc.
 - (d) Relations/functions with domains that are sets of numbers, power sets, Cartesian products, etc.
- 5. Beware algebra mistakes. Remember that I like to give partial credit.
- 6. There MAY be one short PMI proof about divisibility or inequality. We'll discuss in class.