Follow directions carefully; work in the space provided. This in-class part of the exam is worth 85 points.

There are 3 full proofs. Each is marked with [P]. There are also 3 launches, each marked [La].

1. [15 pts - 5 each] Precisely negate each statement below. Don't worry about whether the statements are true or not.

 $\chi^2 - 5\chi + 6 \ge 0$ and $\chi > -2$ and $\chi < 3$. (a) $x^2 - 5x + 6 \ge 0$ only if $x \le -2$ or $x \ge 3$.

(language variations) + if

(b) y = 7, and $x^2 = 9$ if |x| = 1

 $y \neq 7$, or |x| = 3 but $x^2 \neq 9$.

(c) There exists $n \in \mathbb{Z}$ where nx > 1 for all $x \in \mathbb{R}^+$.

FOR all $n \in \mathbb{Z}$, $n \times \leq 1$ for some $x \in \mathbb{R}^{+}$. (language variations)

possible, but NOT

possible variations)

2. (a) [2 pts] Write the logical equivalence governing proof by cases. $(p \lor q) \rightarrow \Gamma = (p \rightarrow \Gamma) \land (q \rightarrow \Gamma)$

(b) /2 pts/ Write the logical equivalence governing two-part proof (of biconditional statements).

 $p \leftrightarrow q \equiv (p \rightarrow q) \wedge (q \rightarrow p)$

3. $[12 \ pts]$ [P] Use the formal definition of < to write a rigorous direct proof of the statement below. (I'll give you the definition, for a deduction.)

Proposition: Let $p, q, x, y \in \mathbb{R}$. If p < q and x < y, then p + x < q + y.

4. [12 pts] [P] Prove rigorously, using direct proof. (I'll give a hint, for a deduction.)

Let $x, y \in \mathbb{Z}$ have the same remainder on division by 3. If that remainder is not 0, then 3(xy-1).

Pf. - Slet x, y & Z have the same remainder on division by 3. Server -> Assume that remainder is not 0. (NTS: 3/(xy-1), meaning 3. [int] = xy-1) Then the remainder can only be I or 2. Case 1: assume the remainder is 1. Then x=3k+1 and y=3l+1for some $k,l \in \mathbb{Z}$. So 2y-1= 9kl + 3k + 3l + 1-1 = 3(3kl + k+l). = 3(3kx+k+x).

= 3(3kx+k+x).

by closure

for a skl + k+l \in \mathbb{T} by closure

and addition.

Thus, 3/ xy-1.

Thus, 3/ xy-1.

Case 3: Assume the remainder is 2.

Then V= 2b+3 ... - 20: a

Then V= 2b+3 ... - 20: a now 3kl + 2k + 2l + (ET by closure)

Thus, 3/xy-1. Therefore, if x, y's remainder is not 0, then 3/xy-1.

5. [12 pts] [P] Prove by any meaningful style. (Surprise: ≥ algebra allowed, but for a deduction.)

Proposition: Let $t \in \mathbf{R}$. If $|t| \geq 5$. then $2t + 8 \neq 0$.

(Remember that formal < definition is NEVER required for concrete numbers.)

Pf- Set
$$t \in \mathbb{R}$$
.

Pf- Assume $9t + 8 = 0$.

(NTS: $|t| < 5$)

(NTS: $|t| < 5$)

Since $|-4| = 4 < 5$,

we have $|t| < 5$, as desired.

Therefore, if $|t| \ge 5$, then $9t + 8 \ne 0$.

- 6. [16 pts 8 each] Consider this Proposition: Let $x, y \in \mathbb{Z}$. If xy is even, then x is even or y is even.
 - (a) [La] Write the launch, up to and including one meaningful sentence BEYOND the NTS line, of a proof by contrapositive. Do NOT complete the proof.

a proof by contrapositive. Do NOT complete the proof.

Pf - Let
$$X, y \in \mathbb{Z}$$
.

Obsume X is odd and y is odd.

(NTS: Xy is odd, meaning $Xy = \partial \cdot \lceil \frac{1}{1} + 1 \rceil$)

Then $X = \partial k + (for some k \in \mathbb{Z})$.

(b) [La] Write the launch, up to and including one meaningful sentence BEYOND the NTS line, of a proof by "or conclusion" style. Do NOT complete the proof.

- 7. Consider this Proposition: Let $m \in \mathbb{R}$, and let $f(x) = \arctan x$ and $g(x) = mx \frac{\pi}{2}$. The graphs of f and g DON'T intersect if and only if m = 0.
 - (a) [2 pts] Ignoring the universal hypothesis for now, write the "if" direction in unchanged order.

(b) [La] [8 pts] Including the universal hypothesis, write the launch, up to and including on meaningful sentence BEYOND the NTS line, of a proof by contradiction for the "if" direction. Do NOT complete the proof.

Pf- det $m \in TR$ and let $f(x) = \operatorname{arctan} x$ and $g(x) = mx - \frac{\pi}{2}$. and $g(x) = mx - \frac{\pi}{2}$. Finally assume m = 0 and the graphs of f and g

(NTS: any *)

(NTS: any *)

Then there exists a point (various next) Then there exists a point (various next) with a, b ETR that lies on both graphs at once.

8. [4 pts] Formally state the Fundamental Theorem of Arithmetic (FTA).

Every integer greater than (
has exactly one prime
factorization, up to the
order of those factors.