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%“3 Math 235 - Dr. Miller - Exam #1, In-Class Portion, Spring 2023 - Friday, Feb, 17, 2023 { Ci

Follow directions carefully: work in the space provided. This in-class part of the exam is worth 85 points.

There are 3 full proofs. Each is marked with [P]. There are also 3 launches, each marked [La].

1. /15 pts - 7 each/ Precisely negate each statement below. Don’t worry about whether the statements

are true or not.
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{¢) There exists n € Z where nr =1 for all x € R™.
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2. (a) [2 pts/ Write the logical equivalence governing plooff.b\ cases.

(Ve = 0

(b) [2 pts/ Write the logical equivalence governing two-part proof {of biconditional statements).
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3. [12 pts/ [P] Use the formal definition of < to write a rigorous direct proof of the statement below. (I'll
give you the definition, for a deduction.)

Proposition: Let p.g.x.yc R. If p<qandz < y. thenp+x < q+y.
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4. [12 pts] [P] Prove rigorously, using direct proof. (I'll give a hint, for a deduction.) I'Z.

Let z.y € Z have the same remainder on division by 3. If that remainder is not 0. then 3/(zy — 1).
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5. [12 pts] [P] Prove by any meaningful style. {Surprise: > algebra allowed. but for a deduction.)

Proposition: Lett e R. If |t| > 5. then 2t + 8 £ 0.

{Remember that formal < definition is NEVER required for concrete numbers.)
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6. [16 pts - 8 each/ Consider this Proposition: Let x.y € Z. If xy is cven. then x is even or y s even. I A’?

{a) [La) Write the launch, up to and including one meaningful sentence BEYOND the NT'S line. of
a proof by contrapesitive. Do NOT complete the proof.

(b} [Laj Write the launch. up to and including one meaningful sentence BEYOND the NTS line, of

a proof by “or conclusion™ style. Do NOT complete the proof.
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7. Consider this Proposition: Let m € R. and let f(z) = arctanx and g(x) = mx — 3. The graphs of f
and g DON'T intersect if and only if m = 0.

(a) /2 pts] Ignoring the universal hypothesis for now, write the “if” direction in unchanged order.
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(b) [La] /8 pts/ Including the universal hypothesis, write the launch, up to and including onénean-J =7
ingful sentence BEYOND the NTS line, of a proof by contradiction for the “if” direction. Do -
NOT complete the proof.

8. [4 pts/ Formally state the Fundamental Theorem of Arithmetic (FTA}.
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