1. [10 pts] Prove carefully and rigorously via an appropriate definition: Let x be a real number. If x is rational, then $x + \frac{1}{2}$ is rational. (You must use a definition; you may NOT simply invoke the homework result about sums of rational numbers.)

Suppose that x is rational. Then $x = \frac{p}{q}$ for some integers p and q with $q \neq 0$. By arithmetic, we know that $x + \frac{1}{2} = \frac{2p+q}{2q}$ which is rational because 2p+q and 2q are sums and products of integers and therefore also integers, and $2q \neq 0$ because $q \neq 0$.

2. [10 pts] Prove carefully and rigorously via an appropriate definition: Let x and y be integers. If xy is odd, then x and y are both odd.

Let x and y be integers and suppose it is not the case that they are both odd. Then at least one of them is even; without loss of generality, let x be even. Then x = 2n for some integer n, and xy = 2ny = 2(ny). Because ny is a product of integers, it is also an integer, so xy is even. By contrapositive, therefore, if xy is odd, then x and y are both odd.

- 3. [18 pts 6 each] Disprove each statement below, applying appropriate definitions.
 - (a) If a and b are real numbers with $a^2 < b^2$, then a < b.

Consider a = -3 and b = -4. It is true that $(-3)^2 = 9 < (-4)^2 = 16$ because the positive number 7 satisfies 9 + 7 = 16. However, $-3 \not\leq -4$ because there is no positive real number x for which -3 + x = 4. (The only solution is x = -1, which isn't positive.)

(b) Let $M = \{x \mid x = 10m + 35n + 4p \text{ for some integers } m, n, \text{ and } p\}$ and let $K = \{y \mid y = 5k \text{ for some integer } k\}$. Then $M \subseteq K$.

Consider 4, which is an element of M because 4 = 10(0) + 35(0) + 4(1) where 0 and 1 are integers. The number 4 is not an element of K because there is no integer k for which 4 = 5k. (The only option is k = 5/4, which isn't an integer.)

(c) The product of any two distinct irrational numbers is also irrational.

We have already proved that $\sqrt{2}$ is irrational. By similar reasoning $-\sqrt{2}$ is also irrational. Yet their product, -2, is rational, because it can be written as -2/1, a fraction of integers with nonzero denominator.

4. [8 pts] Let $\Lambda = \{1, \frac{1}{2}, \frac{1}{3}, \ldots\} = \{\frac{1}{n} \mid n \in \mathbb{N}\}$ and define $B_{\alpha} = [-1, 1 - \alpha]$ for each $\alpha \in \Lambda$. Prove that $\cap_{\Lambda} B_{\alpha} \subseteq [-1, 0]$.

Let $x \notin [-1,0]$. This interval equals B_1 , so $x \notin B_1$. Thus, it is not true that $x \in B_{\alpha}$ for all $\alpha \in \Lambda$ and therefore $x \notin \cap_{\lambda} B_{\alpha}$ by definition of the arbitrary intersection. By contrapositive, $x \in \cap_{\lambda} B_{\alpha}$ implies that $x \in [-1,0]$.

- 5. [12 pts 4 or 1 each] Let $\Lambda = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$ and define $B_{\alpha} = [-1 + \alpha, 1 + \alpha)$ for each $\alpha \in \Lambda$.
 - (a) Find $\cap_{\Lambda} B_{\alpha}$.

$$\bigcap_{\Lambda} B_{\alpha} = [0, 1]$$

(b) Find $\cup_{\Lambda} B_{\alpha}$.

$$\cup_{\Lambda} B_{\alpha} = (-1, 2)$$

- (c) For each value of x below, find a value of α for which $x \in B_{\alpha}$. If not possible, say so.
 - i. $x = -\frac{2}{\pi}$

Various, so long as $\alpha \leq \frac{1}{3}$

ii. $x = -\frac{2}{7}$

Any legitimate α will work.

iii. x = 1.02

Any legitimate α will work.

iv. $x = 3\frac{1}{2}$

This is not possible.

6. (a) [4 pts] State the Archimedean Property in mathematically precise language.

Let r be a real number. Then there exists an integer n for which n > r.

(b) [4 pts] Let Λ be an indexing set for the collection $\{B_{\alpha}\}_{\alpha \in \Lambda}$. State the definition of $\cup_{\Lambda} B_{\alpha}$ in mathematically precise language.

 $\cup_{\Lambda} B_{\alpha} = \{x \mid \text{ there exists } \alpha \in \Lambda \text{ with } x \in B_{\alpha}\}$

- 7. [10 pts 2 each] Classify each statement below as always, sometimes, or never true. More specifically, these terms mean:
 - Always true: there do not exist counterexamples to the claim.
 - Sometimes true: there exist both examples of and counterexamples to the claim.
 - Never true: There do not exist any examples of the claim.
 - (a) The sum of two even integers is even.

	always true	sometimes true	$never\ true$
(b)	The sum of two odd integers is odd.		
	always true	$sometimes\ true$	<u>never true</u>
(c)	The product of two rational numbers is rational.		
	always true	$sometimes\ true$	never true
(d)	The product of two irrational nu	mbers is irrational.	
	always true	<u>sometimes true</u>	never true
(e)	The quotient of two even integers is even.		
	always true	<u>sometimes true</u>	never true

- 8. [9 pts 3 each] For each statement type below, tell what you would assume and what you would try to show in writing the indicated type of proof.
 - (a) "If P, then Q" by contradiction

Assume P and $\sim Q$. Try to show any contradiction.

(b) "If P, then Q or S" by contrapositive

Assume $\sim Q$ and $\sim S$. Try to show $\sim P$.

(c) "If P, then Q or S" NOT by contrapositive

Assume P and $\sim Q$. Try to show S.

9. [15 pts] Take-Home Problem due Monday: DO NOT collaborate on this problem. You may refer to your notes, text, and homework, but do NOT refer to any other resources, including the Internet.

Let A and B be sets. Prove that $A \subseteq B$ if and only if $A \cup C \subseteq B \cup C$ for all sets C.

 \implies : Let A and B be sets, and suppose that $A \subseteq B$. Let C be any set, and let $x \in A \cup C$. By definition of union, $x \in A$ or $x \in C$.

Case 1: If $x \in A$, then by definition of subset and the assumption that $A \subseteq B$, we have $x \in B$. Then it is true that $x \in B$ or $x \in C$, so $x \in B \cup C$, as desired.

Case 2: If $x \in C$, then it is true that $x \in B$ or $x \in C$, so again $x \in B \cup C$, as desired. Therefore, $A \cup C \subseteq B \cup C$. (Because C was arbitrary, this is true for all sets C.)

 \Leftarrow : (Direct option) Suppose that $A \cup C \subseteq B \cup C$ for all sets C. Then it is certainly true for $C = \emptyset$, so that $A \cup \emptyset \subseteq B \cup \emptyset$. We prove that $A \cup \emptyset = A$:

Let $x \in A \cup \emptyset$. By definition of union, $x \in A$ or $x \in \emptyset$. However, $x \in \emptyset$ is impossible, so we must have $x \in A$, proving that $A \cup \emptyset \subseteq A$. Now let $x \in A$. Then it is certainly true that $x \in A$ or $x \in \emptyset$ (An "or" statement is true when just one component is true), so $x \in A \cup \emptyset$, proving that $A \subseteq A \cup \emptyset$. Therefore, $A \cup \emptyset = A$. Similarly, $B \cup \emptyset = B$.

Thus, the statement $A \cup \emptyset \subseteq B \cup \emptyset$ from earlier becomes $A \subseteq B$, as desired.

 \Leftarrow : (Proof by contrapositive option) Suppose that $A \not\subseteq B$. (NTS: There exists a set C for which $A \cup C \not\subseteq B \cup C$.) Let $C = \emptyset$. We prove that $A \cup \emptyset = A$:

Let $x \in A \cup \emptyset$. By definition of union, $x \in A$ or $x \in \emptyset$. However, $x \in \emptyset$ is impossible, so we must have $x \in A$, proving that $A \cup \emptyset \subseteq A$. Now let $x \in A$. Then it is certainly true that $x \in A$ or $x \in \emptyset$ (An "or" statement is true when just one component is true), so $x \in A \cup \emptyset$, proving that $A \subseteq A \cup \emptyset$. Therefore, $A \cup \emptyset = A$.

Similarly, $B \cup \emptyset = B$.

Because $A \cup \emptyset = A$ and $B \cup \emptyset = B$, we see that $A \cup \emptyset \not\subseteq B \cup \emptyset$, so there exists a set C for which $A \cup C \not\subseteq B \cup C$, as desired.

(The second half of the proof, regardless of your approach, is a perfect opportunity either to use Lemma 1 from this past week in class, or to create your own lemma. If you wanted to do the latter, stylistically you would prove "Lemma: Let X be a set. Then $X = X \cup \emptyset$." before anything else, THEN launch into the entire proof – both directions – about A, B, and C. It would also be acceptable style-wise to prove the \Longrightarrow direction, then insert the proof of the lemma, and finally finish with the \Leftarrow direction.)

My signature indicates that I have not collaborated with any other person on this problem, nor have I referred to any other materials, printed, online, or otherwise, besides my notes, text, and homework.

Signed,