\#1-2 are proofs, and \#3-5 have multiple parts. Budget your time accordingly.

1. [25 pts] Prove that $10 \mid 9^{2 n}-11^{n}$ for all natural numbers n.

Proof. Consider the statement $10 \mid 9^{2 n}-11^{n}$. When $n=1$, the right-hand expression equals 70 , which is divisible by 10 . Assume that $10 \mid 9^{2 k}-11^{k}$ for some natural number k. Then there exists an integer x for which $10 x=9^{2 k}-11^{k}$. Now consider $9^{2(k+1)}-11^{k+1}$. We have

$$
\begin{array}{rlr}
9^{2(k+1)}-11^{k+1} & =81 \cdot 9^{2 k} & -11^{k+1} \\
& =81 \cdot\left(9^{2 k}-11^{k}\right)+81 \cdot 11^{k}-11^{k+1} \\
& =81 \cdot 10 x+70 \cdot 11^{k} \quad(\text { by IHOP }) \\
& =10\left(81 x-7 \cdot 11^{k}\right) . &
\end{array}
$$

Now 11^{k} is an integer because k is a natural number, so $81 x-7 \cdot 11^{k}$ is also an integer, being the product and difference of integers. Thus, $10 \mid 9^{2(k+1)}-11^{k+1}$, and by PMI, $10 \mid 9^{2 n}-11^{n}$ for all natural numbers n.
2. In \mathbf{R}, define $x R y$ if there exists $t>0$ for which $x+t=y$.
(a) $[5 \mathrm{pts}]$ Give examples of 3 ordered pairs that belong to R.

Various. For example, $(1,4)$ belongs to R with $t=3>0$.
(b) $[15 \mathrm{pts}]$ Determine whether R is transitive, and prove your claim.

Proof. Suppose $x R y$ and $y R z$. Then there exist $t>0$ and $s>0$ with $x+t=y$ and $y+s=z$. By substitution, $x+t+s=z$. Because the sum of positive numbers is positive, $s+t>0$, whence $x R z$, as desired, and R IS transitive.
3. [16 pts - 8 each] Consider the relation $R=\{(2,3),(3,4),(4,1)(4,4)\}$ defined on $A=\{1,2,3,4\}$.
(a) R is not an equivalence relation: it's missing some necessary pairs. Give one ordered pair that's missing, and explain why it's needed. (One sentence will suffice.)

Various. For instance $(1,1),(2,2)$, and $(3,3)$ are missing - they would be needed to make R reflexive.
Also, $(3,2),(4,3)$, and $(1,4)$ are needed in order to make R symmetric.
Finally, to make R transitive, at the very least $(2,4)$ must be included (because $2 R 3$ and 3R4).
(b) Give another ordered pair that's missing for a DIFFERENT reason, and explain why it's needed.

See above.
4. [15 pts] Give an example of a family of three sets that is a partition of $\{1,2,3,4,5\}$, explaining how you know. (One or two sentences is sufficient.)

Various: for example, $\{1,2\},\{3\}$, and $\{4,5\}$. These are a partition because (1) none of them are empty, (2) their union is all of the given set, and (3) any two of them are disjoint.
5. [24 pts - 8 each] Find $\cap A_{i}$ and $\cup A_{i}$ for each of the families below. Tell which is which.
(a) The index set is \mathbf{N}, and $A_{i}=\left[\frac{1}{i}, 2+\frac{1}{i}\right]$.

List a few: $A_{1}=[1,3], A_{2}=\left[\frac{1}{2}, 2 \frac{1}{2}\right], A_{3}=\left[\frac{1}{3}, 2 \frac{1}{3}\right]$, etc. Use a number line to help visualize.

$$
\bigcap A_{i}=[1,2] \quad \bigcup A_{i}=(0,3]
$$

(b) The index set is $\mathbf{Z} \backslash\{0\}$, and $A_{i}=\left[\frac{1}{i}, 2+\frac{1}{i}\right]$.

This family includes all the sets above $-A_{1}=[1,3], A_{2}=\left[\frac{1}{2}, 2 \frac{1}{2}\right], A_{3}=\left[\frac{1}{3}, 2 \frac{1}{3}\right]$, etc. - and also those with negative subscripts. List a few of those: $A_{-1}=[-1,1]$, $A_{-2}=\left[-\frac{1}{2}, 1 \frac{1}{2}\right], A_{-3}=\left[-\frac{1}{3}, 1 \frac{2}{3}\right]$, etc. Use a number line to help visualize.

$$
\bigcap A_{i}=\{1\} \quad \bigcup A_{i}=[-1,3]
$$

(c) The index set is \mathbf{R}^{+}(the set of positive real numbers), and A_{i} is the INSIDE of the rectangle in the plane having vertices at $(0,0),(0, i),(i, 0)$, and (i, i). You may describe your answers verbally.

Draw some examples: A_{1} is the inside of the square of side length 1 "cornered" at the origin. A_{π} is the inside of the square of side length π in the same position. $A_{0.01}$ is the inside of the square whose side length is only 0.01 also in that position.

$$
\bigcap A_{i}=\emptyset
$$

Their overlap (intersection) is the empty set, because any potential point of overlap could always be excluded from a square that was tiny enough, and we're not counting the boundaries, so the corner point $(0,0)$ is never included.

$$
\bigcup A_{i}=\text { Quadrant } I
$$

Their union is the entire first quadrant, because you can just make larger and larger squares to cover any potential point in the union.

