1. Use the specified techniques to compare each collection of fractions and arrange them in decreasing order.

(a) Draw diagrams:
$$\frac{1}{3}$$
, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{5}$
(b) Draw diagrams: $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, $\frac{7}{8}$
(c) Use a common denominator: $\frac{5}{6}$, $\frac{9}{10}$, $\frac{6}{8}$
(d) Use the meanings of numerator and denominator: $\frac{1}{3}$, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{5}$
(e) Use the meanings of numerator and denominator: $\frac{7}{8}$, $\frac{70}{81}$
(f) Use the meanings of numerator and denominator: $\frac{5}{6}$, $\frac{51}{60}$, $\frac{50}{61}$
(g) Reduce to lowest terms, then use a common denominator: $\frac{4}{6}$, $\frac{8}{10}$, $\frac{6}{8}$
(h) Compare to a familiar fraction first; continue as you choose: $\frac{3}{7}$, $\frac{5}{8}$, $\frac{4}{9}$, $\frac{7}{10}$
(i) Demonstrate as many techniques as possible: $\frac{9}{8}$, $\frac{9}{7}$, $\frac{7}{9}$

- 2. Use the meanings of numerator and denominator, with equivalent fractions where permitted, in determining which of each pair below is larger. If the "meaning" method is not viable, explain why.
 - (a) 3/7 vs. 4/5 (do not convert to equivalent fractions)
 - (b) 3/5 vs. 4/7 (do not convert to equivalent fractions)
 - (c) 5/4 vs. 7/3 (do not convert to equivalent fractions)
 - (d) 50/51 vs. 49/52 (do not convert to equivalent fractions)
 - (e) 50/51 vs. 51/52 (do not convert to equivalent fractions)
 - (f) 50/51 vs. 101/102 (you may use equivalent fractions)

- (c) One CD is 240. Now $\frac{5}{6} \times \frac{40}{40} = \frac{200}{240}$, $\frac{9}{10} \times \frac{24}{24} = \frac{216}{240}$, and $\frac{6}{8} \times \frac{30}{30} = \frac{180}{240}$. So $\frac{9}{10} > \frac{5}{6} > \frac{6}{8}$. (d) All keep just one piece, but halves are fatter than thirds, which are fatter than fourths, which exceed fifths. So $\frac{1}{2} > \frac{1}{3} > \frac{1}{4} > \frac{1}{5}$.
- (e) Convert $\frac{7}{8}$ to $\frac{70}{80}$ to have closer numerators and denominators. They both keep the same number of pieces, but 80ths are a little fatter than 81sts, so 70/80 is the larger fraction: $\frac{7}{8} > \frac{70}{81}$
- (f) We need to convert $\frac{5}{6}$ to $\frac{50}{60}$ first. Then notice that it keeps fewer of the same-size pieces than $\frac{51}{60}$, so $\frac{5}{6} < \frac{51}{60}$. Also, it (the rewritten $\frac{5}{6}$) keeps the same number of pieces as $\frac{50}{61}$, but they're fatter pieces, so $\frac{5}{6} > \frac{50}{61}$. That means $\frac{51}{60} > \frac{5}{6} > \frac{50}{61}$. (g) $\frac{4}{6} = \frac{2}{3}$, $\frac{8}{10} = \frac{4}{5}$, and $\frac{6}{8} = \frac{3}{4}$, so 60 is a little easier to see as a CD: $\frac{2}{3} \times \frac{20}{20} = \frac{40}{60}$, $\frac{8}{10} \times \frac{6}{6} = \frac{48}{60}$, $\frac{3}{4} \times \frac{15}{15} = \frac{45}{60}$. So $\frac{8}{10} > \frac{3}{4} > \frac{4}{6}$.
- (h) $\frac{3}{7}$ and $\frac{4}{9}$ are each smaller than one half, so they're the two smallest, with cross-multiplying showing that 27 < 28 makes $\frac{3}{7}$ the very smallest. $\frac{5}{8} \times \frac{10}{10} = \frac{50}{80}$ and $\frac{7}{10} \times \frac{8}{8} = \frac{56}{80}$ sorts out the larger two. So the order is $\frac{7}{10} > \frac{5}{8} > \frac{4}{9} > \frac{3}{7}$.
- (i) Both $\frac{9}{7}$ and $\frac{9}{8}$ are more than 1, while $\frac{7}{9}$ is less than 1. Of these two larger fractions, both keep the same number of pieces, but sevenths are fatter than eighths, making $\frac{9}{7}$ largest. You can also solve by drawing diagrams, getting common denominators, or cross multiplying (BEWARE: cross-multiplying can only help you decide about two fractions at a time, never more.)
- 2. (a) 3/7 has fewer pieces (3 vs. 4) and they are thinner (a seventh of a pizza is skinnier than a fifth of that pizza), so 3/7 is the smaller fraction overall.
 - (b) We can't tell: 3/5 has fewer pieces, but they are fatter, so maybe it's bigger (its numerator thinks so) but maybe it's smaller (the denominators support that claim).
 - (c) 5/4 has fewer pieces, and they are a little thinner too, so 5/4 is the smaller fraction overall.
 - (d) 50/51 has more pieces (50 vs. 49) and they are fatter (there aren't so many 51sts in a whole as there are 52nds, making 51sts a little thicker), so 50/51 is bigger overall.
 - (e) This method won't work: 50/51 has fewer pieces (50 vs. 51) but they are fatter (51sts are thicker than 52nds) so there's a "stand-off": the numerators think 50/51 should be smaller (fewer pieces), but the denominators want it to be bigger (each piece worth more). Think of the coin analogy with children.
 - (f) Untouched, the fractions share a "stand-off": 50/51 has fewer pieces, but each piece is fatter, so we don't know whether it "wins" or not. However, 50/51 = 100/102. Now the fractions have samesize pieces, so the denominators create a tie and the decision is entirely up to the numerators: 100/102 has fewer pieces, so it is the smaller fraction.