- 1. Describe three different chip arrangements to represent each integer below.
 - (a) -2
 - (b) 4
 - (c) 1
- 2. Describe in 1-2 sentences how to act out each addition using positive/negative chips. Remember to tell how to see the final answer.
 - (a) (-10) + (-2)
 - (b) (-3) + 5
 - (c) 6 + (-1)
 - (d) (-7) + 3
- 3. Describe in 2-3 sentences how to act out each subtraction as a *take away* problem. If zero pairs are involved, tell how many to include AND why we include them. State the final answer, too.
 - (a) (-5) (-1)
 - (b) (-5) 2
 - (c) 4 (-2)
 - (d) 4 6
 - (e) (-2) (-8)
 - (f) (-2) 5
 - (g) (-6) (-2)

(h)
$$2 - (-3)$$

- 4. Describe in 2-3 sentences how to act out each subtraction above as a *missing addend* problem. State the final answer, too.
- 5. Describe in 2-3 sentences how to act out each multiplication or division problem below; if not possible, say why. State the final answer, too.
 - (a) $5 \times (-2)$ (b) $(-2) \times 4$ (c) $(-2) \times (-3)$ (d) $(-4) \times 3$ (e) $(-12) \div 4$ (f) $(-12) \div (-4)$ (g) $(-20) \div 4$ (h) $20 \div (-4)$ (i) $20 \div 4$ (j) $(-20) \div (-4)$

- 1. (a) $2 \oplus, 3 \oplus and 1 \oplus, 5 \oplus and 3 \oplus$
 - (b) $4 \oplus, 5 \oplus and 1 \ominus, 12 \oplus and 8 \ominus$
 - (c) $1 \oplus, 3 \oplus and 2 \ominus, 9 \oplus and 8 \ominus$
- 2. (a) Set out $10 \ominus$ and $2 \mod \ominus$. Put them together to make $12 \ominus$, or -12.
 - (b) Set out $3 \ominus$ and $5 \oplus$. Put them together and ignore the three zero pairs, leaving $2 \oplus$, or 2.
 - (c) Set out $6 \oplus$ and $1 \oplus$. Put them together and ignore the zero pair, leaving $5 \oplus$, or 5.
 - (d) Set out 7 \ominus and 3 \oplus . Put them together and ignore the zero pairs, leaving 4 \ominus , or -4.
- 3. (a) Set out $5 \ominus$. Take away $1 \ominus$, leaving $4 \ominus$, or -4.
 - (b) Set out $5 \ominus$. You don't have enough \oplus to take 2 of them away, so include two zero pairs. Remove $2 \oplus$, leaving $7 \ominus$, or -7.
 - (c) Set out $4 \oplus$. You don't have enough \oplus to take 2 of them away, so include two zero pairs. Remove $2 \oplus$, leaving $6 \oplus$, or 6.
 - (d) Set out 4 ⊕. There aren't enough to take 6 of them away, so include two zero pairs. Remove 6 ⊕, leaving 2 ⊖, or -2.
 - (e) Set out 2 ⊖. There aren't enough to take 8 of them away, so include six zero pairs. Remove 8 ⊖, leaving 6 ⊕, or 6.
 - (f) Set out $2 \ominus$. You don't have enough \oplus to take 5 of them away, so include 5 zero pairs. Remove $5 \oplus$, leaving $7 \ominus$, or -7.
 - (g) Set out $6 \ominus$. Take away $2 \ominus$, leaving $4 \ominus$, or -4.
 - (h) Set out $2 \oplus$. You don't have enough \ominus to take 3 of them away, so include three zero pairs. Remove $3 \ominus$, leaving $5 \oplus$, or 5.
- 4. (a) (-5) (-1) asks $(-1) + _ = -5$. We must add -4.
 - (b) (-5) 2 asks $2 + _ = -5$. We must add -7.
 - (c) 4 (-2) asks $(-2) + _ = 4$. We must add 6.
 - (d) 4 6 asks $6 + _ = 4$. We must add -2.
 - (e) (-2) (-8) asks $(-8) + _ = -2$. We must add 6.
 - (f) (-2) 5 asks $5 + \underline{} = -2$. We must add -7.
 - (g) (-6) (-2) asks $(-2) + _ = -6$. We must add -4.
 - (h) 2 (-3) asks $(-3) + _ = 2$. We must add 5.
- 5. (a) Set out 5 groups of $2 \ominus$. Count $10 \ominus$, or -10.
 - (b) Set out 4 groups of $2 \ominus$. Count $8 \ominus$, or -8.
 - (c) $(-2) \times (-3)$ cannot be acted out using repeated sets.
 - (d) Set out 3 groups of $4 \ominus$. Count $12 \ominus$, or -12.
 - (e) Separate $12 \ominus$ into 4 groups. Count $3 \ominus$ in each group, for an answer of -3.
 - (f) Separate $12 \ominus$ into groups of $4 \ominus$. Count 3 groups, for an answer of 3.
 - (g) Separate $20 \ominus$ into 4 groups. Count $5 \ominus$ in each group, for an answer of -5.
 - (h) $20 \div (-4)$ cannot be acted out using repeated subtraction or sharing.
 - (i) Separate $20 \oplus$ into 4 groups. Count $5 \oplus$ in each group, for an answer of 5.
 - (j) Separate $20 \ominus$ into groups of $4 \ominus$. Count 5 groups, for an answer of 5.