For each question below, make up your own set of 5 scores from 0 to 100 , inclusive, that would have the given properties. If not possible, explain.

1. a mean of 50 and a median of 60
2. a mean of 50 and a median of 60 , with a smaller range than above
3. a median of 50 and a mean of 60
4. a median of 50 and a mean of 60 , with a larger range than above
5. a mode of 50 and a median of 60
6. a mode of 50 and a mean of 60
7. two modes - 50 and 60 - and a median of 53
8. two modes - 50 and 60 - and a mean of 53
9. two modes - 20 and 30 - and a median of 35
10. the mean will be significantly changed ($+/-10$ points) by inclusion of a sixth score of 100 - that is, the old mean for your original 5 scores is plus/minus 10 points different from the new mean of all 6 scores
11. the mean will be significantly affected ($+/-10$ points) by inclusion of a sixth score of 100, and the range is larger than in Problem \#10 above
12. the median will be significantly changed ($+/-10$ points) by including a sixth score of 0
13. the median will NOT be significantly affected ($+/-10$ points) by inclusion of a sixth score of 0
14. the mean will be significantly changed by including a sixth score of 100 but the median will not
15. a mode of 30 and a mean of 80
16. a mode of 30 and a median of 80
17. a mean of 30 and a mode of 80
18. a mean of 30 and a median of 80
19. a median of 30 and a mode of 80
20. a median of 30 and a mean of 80
21. We must have 60 as the middle score and a total of 250 points otherwise.
22. Again, we must have 60 as the middle score and a total of 250 points, with high score minus low score smaller than before.
23. We must have 50 as the middle score and a total of 300 points otherwise.
24. Again, we must have 50 as the middle score and a total of 300 points, with high score minus score score bigger than before.
25. 50, 50, 60, x, y so long as both x and $y 60$ or higher
26. We must have a pair of 50 's, no other repeated scores, and a total of 300 overall.
27. $50,50,53,60,60$
28. $45,50,50,60,60$
29. This is not possible. We can't have two 20 's, two 30 's, and yet have 35 be the middle score size-wise.
30. $0,0,0,0,0$
31. $0,0,0,0,10$
32. something like $60,70,80,100,100$ is good
33. now something like $80,80,80,100,100$ is good
34. $0,0,0,0,0$
35. This is impossible. We must have (at least) two 30 s but also have a total of 400 . That means the remaining three numbers in our set must total 340 , yet the highest number allowed is only 100, so the best we can get is a total of 300 from the three remaining numbers in our set.
36. 30, 30, 80, x, y so long as both x and y are 80 or higher
37. This is impossible. We need (at least) two 80 s, yet a total of only 150 . The 80 s alone make the total go over 150 .
38. This is impossible. We need an 80 and two more numbers that high or higher, yet a total of only 150 . The 80 and higher numbers make a total of at least 240 , so that's well past what we were allowed.
39. $x, y, 30,80,80$ so long as both x and y are 30 or smaller
40. This is impossible. We need a score of 30 and two others numbers that small or smaller, yet a total of 400 . The biggest total we can make here comes from using $30,30,30,100,100$, and that can only give us a total of 290 .
