1. Simplify to an expression that has only one exponent, which is positive. (The number 1 is also allowed as an answer, numerator, denominator, etc.) Exponents of 1 or 0 should be interpreted correctly, not shown.
(a) $x^{5} \cdot\left(x^{4}\right)^{-2} \div x^{3}$
(b) $x^{5} \cdot\left(x^{4}\right) \div\left(x^{3}\right)^{-2}$
(c) $\frac{y^{-6} \cdot y^{8}}{\left(y^{4}\right)^{7}}$
(d) $\frac{y^{-4} \cdot y^{6}}{\left(y^{5}\right)^{-5}}$
(e) $k^{3} \cdot k^{7} \div\left(k^{-1}\right)^{2}$
(f) $\left(k^{5}\right)^{2} \div\left(k^{7} \cdot k^{3}\right)$
(g) $\left(k^{5}\right)^{2} \div k^{7} \cdot k^{3}$
2. Find the value of the exponent N in each case; the answer may be negative or zero if needed.

Unlike Problem \#1, here you will need to CREATE a "same base" by using such facts as $4=2^{2}$ or $8=2^{3}$ (so switching to a base of 2), $\frac{1}{3}=3^{-1}$ or $81=3^{4}$ (so switching to a base of $3,25=5^{2}$, etc. Guess-and-check can help you sort out the correct swap: for instance, if you aren't sure how to make 625 into a power of 5 , use your calculator to find 5×5, and $\times 5$ further, and so on until you get 625 as an answer, keeping track of how many factors of 5 it took.
(a) $4 \cdot 2^{-3} \div 32=2^{N}$
(b) $8 \div \frac{1}{2} \times 16^{3}=2^{N}$
(c) $64^{-1} \cdot 2^{3} \cdot 4^{5}=2^{N}$
(d) $27 \div\left(3^{4} \cdot 9^{-1}\right)=3^{N}$
(e) $27 \div 3^{4} \cdot 9^{-1}=3^{N}$
(f) $81^{-2} \cdot \frac{1}{9} \cdot 3^{6}=3^{N}$
(g) $5^{4} \div 625 \cdot 25^{-1}=5^{N}$

1. (a) $\frac{1}{x^{6}}$
(b) x^{15}
(c) $\frac{1}{y^{26}}$
(d) y or y^{1}
(e) k^{12}
(f) 1
(g) k^{6}
2. (a) $N=-6$ since $4 \cdot 2^{-3} \div 32=2^{2} \cdot 2^{-3} \div 2^{5}$
(b) $N=16$ since $8 \div \frac{1}{2} \times 16^{3}=2^{3} \div 2^{-1} \times\left(2^{4}\right)^{3}$
(c) $N=7$ since $64^{-1} \cdot 2^{3} \cdot 4^{5}=\left(2^{6}\right)^{-1} \cdot 2^{3} \cdot\left(2^{2}\right)^{5}$
(d) $N=1$ since $27 \div\left(3^{4} \cdot 9^{-1}\right)=3^{3} \div\left(3^{4} \cdot\left(3^{2}\right)^{-1}\right)$
(e) $N=-3$ since $27 \div 3^{4} \cdot 9^{-1}=3^{3} \div 3^{4} \cdot\left(3^{2}\right)^{-1}$
(f) $N=-4$ since $81^{-2} \cdot \frac{1}{9} \cdot 3^{6}=\left(3^{4}\right)^{-2} \cdot 3^{-2} \cdot 3^{6}$
(g) $N=-2$ since $5^{4} \div 625 \cdot 25^{-1}=5^{4} \div 5^{4} \cdot\left(5^{2}\right)^{-1}$
