Leave all answers in exponent form, unless they appear very easy to simplify.

1. A sixth-grade teacher makes fraction cards for a game, using only the numbers 1-20 for numerators and denominators.
(a) How many different cards are possible if she allows numerator and denominator to be equal?
(b) How many cards are possible if she disallows this?
(c) How many cards have a 1 or 2 for the numerator? (Repeats allowed.)
(d) How many cards have even numbers in both positions? (Repeats allowed.)
(e) How many use only prime numbers? (Repeats allowed.)
2. A typical Illinois license plate number contains 3 letters followed by 4 digits.
(a) How many different license plate numbers are possible?
(b) How many do not repeat any letters?
(c) How many do not repeat any digits?
(d) How many repeat neither letters nor digits?
(e) How many have an A, B, or C as the first letter (repeated letters or digits are allowed)?
(f) How many use only even digits (repeated letters/digits are allowed)?
(g) How many do not contain the digit 2? (Repeats are allowed.)
(h) How many use at least one 2? (Repeats are allowed.)
(i) How many use your first initial at least once? (Repeats are allowed.)
3. A typical Wyoming license plate number has 2 letters followed by 5 digits.
(a) How many different license plate numbers are possible?
(b) How many Wyoming license plates begin with the letters WY? (Repeats are allowed.)
(c) How many do *not* begin with WY? (Repeats are allowed.)
(d) How many use the numbers 12345 in that order? (Repeats allowed.)
(e) How many do *not* use the digit 1 at all? (Repeated letters or digits are NOT allowed.)
(f) How many don't contain vowels (A,E,I,O,U)? (Repeated letters NOT allowed.)
(g) How many have at least one vowel? (Repeated letters NOT allowed.)
(h) How many don't use the letter X at all? (Repeats allowed.)
(i) How many use at least one X ? (Repeats allowed.)
(j) How many use at least one odd digit? (Repeats NOT allowed.)
4. (a) $20 \cdot 20=400$
(b) $20 \cdot 19=380$
(c) $2 \cdot 20=40$
(d) $10 \cdot 10=100$
(e) $8 \cdot 8=64$ (Remember, the number 1 is not a prime number.)
5. (a) $26 \cdot 26 \cdot 26 \cdot 10 \cdot 10 \cdot 10 \cdot 10=26^{3} \cdot 10^{4}$
(b) $26 \cdot 25 \cdot 24 \cdot 10 \cdot 10 \cdot 10 \cdot 10=26 \cdot 25 \cdot 24 \cdot 10^{4}$
(c) $26 \cdot 26 \cdot 26 \cdot 10 \cdot 9 \cdot 8 \cdot 7=26^{3} \cdot 10 \cdot 9 \cdot 8 \cdot 7$
(d) $26 \cdot 25 \cdot 24 \cdot 10 \cdot 9 \cdot 8 \cdot 7$
(e) $3 \cdot 26 \cdot 26 \cdot 10 \cdot 10 \cdot 10 \cdot 10=3 \cdot 26^{2} \cdot 10^{4}$
(f) $26 \cdot 26 \cdot 26 \cdot 5 \cdot 5 \cdot 5 \cdot 5=26^{3} \cdot 5^{4}$
(g) $26 \cdot 26 \cdot 26 \cdot 9 \cdot 9 \cdot 9 \cdot 9=26^{3} \cdot 9^{4}$
(h) All minus above: $26^{3} \cdot 10^{4}-26^{3} \cdot 9^{4}$
(i) All minus those that don't: $26^{3} \cdot 10^{4}-25^{3} \cdot 10^{4}$
6. (a) $26 \cdot 26 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10=26^{2} \cdot 10^{5}$
(b) $1 \cdot 1 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10=10^{5}$
(c) All minus above: $26^{2} \cdot 10^{5}-10^{5}$
(d) $26 \cdot 26 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1=26^{2}$
(e) $26 \cdot 25 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5$
(f) $21 \cdot 20 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10=21 \cdot 20 \cdot 10^{5}$
(g) All w/non-repeated letters minus above: $26 \cdot 25 \cdot 10^{5}-21 \cdot 20 \cdot 10^{5}$
(h) $25 \cdot 25 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10=25^{2} \cdot 10^{5}$
(i) All minus above: $26^{2} \cdot 10^{5}-25^{2} \cdot 10^{5}$
(j) All w/no repeats minus those that don't use odds: $26 \cdot 25 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6-26 \cdot 25 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$
