Math 310 - Dr. Miller - Exam#1 - 2/16/09

Set all cell phones to off or silent - no vibrating.

1. $[8 \ pts]$ Explain why the fraction $\frac{5}{0}$ makes no sense, referring to one of the "part-of" meanings of a fraction. (1 or 2 sentences)

2. [12 pts] If 2 orange Fraction Tiles represent the fraction $\frac{8}{3}$, how could you represent the fraction $\frac{1}{2}$? Clearly explain your reasoning.

3. [10 pts] Find a fraction that is equivalent to $\frac{15}{8}$, and for which the sum of numerator and denominator is 368. Show scratch work, but you need not explain.

- 4. Consider the fractions $\frac{30}{41}$ and $\frac{3}{4}$.
 - (a) $[10 \ pts]$ Demonstrate two different techniques for determining which of these fractions is larger.

(b) $[4\ pts]$ Demonstrate any technique for finding a fraction between these two.

5. $[6\ pts]$ Explain why a common denominator is necessary for adding and subtracting fractions. (1 or 2 sentences)

6. [8 pts] Subtract entirely in mixed number notation: $7\frac{1}{3} - 2\frac{3}{4}$. Show clear work.

- 7. [6 pts] Write the number of one problem among Problems #1-6 on this exam in which you used the Fundamental Law of Fractions. Then write and circle the initials "FLF" next to where you applied it in that problem.
- 8. [8 pts] Daphne drew the following diagram to compute $\frac{5}{8} \times \frac{3}{2}$. She claims that her picture shows that the denominator of the product should be 32. Explain whether she is right or wrong and why. (1 or 2 sentences)

- 9. Consider the computation $15 \div 3\frac{1}{2}$.
 - (a) [6 pts] Explain how estimation could help a child to know whether this quotient is larger or smaller than 5. Do **not** actually compute the quotient. (1 or 2 sentences)

(b) [10 pts] Now draw a diagram representing this computation. Circle your final answer, and explain only how the "left-over" is interpreted. (1 sentence)

10. [12 pts - 4 each] Correctly spell the name of the property best indicated by each number sentence below.

(a)
$$\left(\frac{1}{3} + \frac{3}{4}\right) + \left(0 + \frac{1}{2}\right) = \left(\frac{1}{3} + \frac{3}{4}\right) + \frac{1}{2}$$

(b)
$$\left(\frac{1}{3} + \frac{3}{4}\right) + \left(0 + \frac{1}{2}\right) = \left(\frac{3}{4} + \frac{1}{3}\right) + \left(0 + \frac{1}{2}\right)$$

(c)
$$\left(\frac{1}{3} + \frac{3}{4}\right) + \left(0 + \frac{1}{2}\right) = \left(\frac{1}{3} + \frac{3}{4}\right) + \left(0 \cdot \frac{2}{5} + \frac{1}{2}\right)$$