## Set all cell phones to off or silent - no vibrating.

1. [8 pts] Explain why the fraction  $\frac{5}{0}$  makes no sense, referring to one of the "part-of" meanings of a fraction. (1 or 2 sentences)

Part-of-a-whole: you can't cut a whole object into

pues.

pues.

pues.

pues.

pues.

pues.

pois 5 out of way 0 objects.

pois the whole."

2. [12 pts] If 2 orange Fraction Tiles represent the fraction  $\frac{8}{3}$ , how could you represent the fraction  $\frac{1}{2}$ ? Clearly explain your reasoning.

2 orange = 8 pink, so each pink is  $\frac{1}{3}$ .

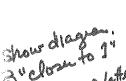
3 pink = 1 whole a to hus.

Cover the whole with 2 green + keys 1.

2 8 3 (2 klm)

green = ½

3. [10 pts] Find a fraction that is equivalent to  $\frac{15}{8}$ , and for which the sum of numerator and denominator is 368. Show scratch work, but you need not explain.


$$\frac{15 \cdot 30}{8 \cdot 30} = \frac{300}{160} > 460 \text{ too big}$$

$$\frac{15 \cdot 30}{8 \cdot 30} = \frac{300}{100} > 460 \text{ too big}$$

$$\frac{15 \cdot 15}{8 \cdot 15} = \frac{225}{120} > 345 \text{ too small}$$

$$\frac{15}{8}, \frac{16}{10} = \frac{240}{128} > 368 \text{ is right.}$$

- 4. Consider the fractions  $\frac{30}{41}$  and  $\frac{3}{4}$ .
  - (a) [10 pts] Demonstrate two different techniques for determining which of these fractions is larger.



tions is larger. (FLF)
$$\frac{30}{41} \text{ vo. } \frac{30}{40} \text{ Both keep 30 pieces, but 40ths are battle,}$$

$$\frac{3}{4} \text{ is larger.}$$

$$\frac{30}{41} \times \frac{3}{4}$$

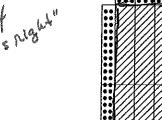
$$\frac{3}{4}, \frac{41}{41} = \frac{133}{164}$$
  $\left[\frac{3}{4} \text{ is larger}\right]$ 

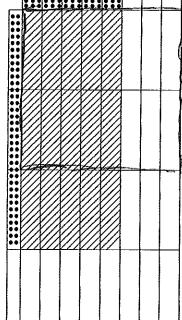
(b) /4 pts/ Demonstrate any technique for finding a fraction between these two.

So is 
$$\frac{30+3}{41+4} = \boxed{\frac{33}{45}}$$

5. [6 pts] Explain why a common denominator is necessary for adding and subtracting

mot come the whole(s) must be separated into same-size pieces to make the answer movements. as a fraction.


6. [8 pts] Subtract entirely in mixed number notation:  $7\frac{1}{3} - 2\frac{3}{4}$ . Show clear work.


3 mot mired 7 3 mumbers 7 3 4 5 14 - 2 4 4

7. [6 pts] Write the number of one problem among Problems #1-6 on this exam in which you used the Fundamental Law of Fractions. Then write and circle the initials "FLF" next to where you applied it in that problem.

( ) mot . A. #3,4,006

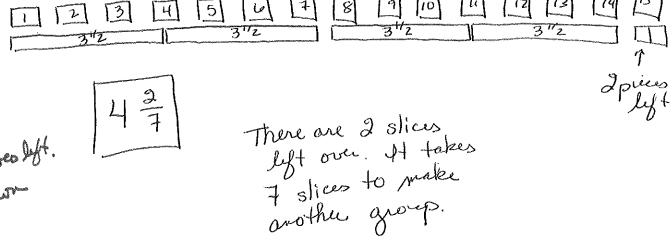
> 8. [8 pts] Daphne drew the following diagram to compute  $\frac{5}{8} \times \frac{3}{2}$ . She claims that her picture shows that the denominator of the product should be 32. Explain whether she is right or wrong and why. (1 or 2 sentences)





She's who wrong.

The correct whole only
has He pieces.


She's counting the entire
picture, which is more
than 1 whole.

- 9. Consider the computation  $15 \div 3\frac{1}{2}$ .
  - (a) [6 pts] Explain how estimation could help a child to know whether this quotient is larger or smaller than 5. Do not actually compute the quotient. (1 or 2 sentences)

you're dividing by a number larger than 3, 50 it will "go in" fewer than 5 times.

2) mention

(b) [10 pts] Now draw a diagram representing this computation. Circle your final answer, and explain only how the "left-over" is interpreted. (1 sentence)



3 misdraum

10. [12 pts - 4 each] Correctly spell the name of the property best indicated by each number sentence below.

sentence below.

(a) 
$$\left(\frac{1}{3} + \frac{3}{4}\right) + \left(0 + \frac{1}{2}\right) = \left(\frac{1}{3} + \frac{3}{4}\right) + \frac{1}{2}$$
 Admitty Property of Oddition.

(b) 
$$\left(\frac{1}{3} + \frac{3}{4}\right) + \left(0 + \frac{1}{2}\right) = \left(\frac{3}{4} + \frac{1}{3}\right) + \left(0 + \frac{1}{2}\right)$$
 Commutative Property of addition

(c) 
$$\left(\frac{1}{3} + \frac{3}{4}\right) + \left(0 + \frac{1}{2}\right) = \left(\frac{1}{3} + \frac{3}{4}\right) + \left(0 \cdot \frac{2}{5} + \frac{1}{2}\right)$$
 zero Property of Mult.