1. [10 pts] Find all pairs of positive integers a and b for which $(a, b)=17^{2} \cdot 19$ and $[a, b]=13 \cdot 17^{3} \cdot 19^{2}$. Show clear work.

Because $(a, b)=17^{2} \cdot 19$ is a common factor, both numbers must contain this prime factorization. The remaining prime factors of $[a, b]=13 \cdot 17^{3} \cdot 19^{2}$ - namely, the extra 13, 17, and 19 - can be shared between a and b in any combination. Thus, we obtain these options:

$$
\begin{array}{rlr}
a=17^{2} \cdot 19 & b=13 \cdot 17^{3} \cdot 19^{2} \\
a=13 \cdot 17^{2} \cdot 19 & b=17^{3} \cdot 19^{2} \\
\quad a=17^{3} \cdot 19 & b=13 \cdot 17^{2} \cdot 19^{2} \\
a=17^{2} \cdot 19^{2} & b=13 \cdot 17^{3} \cdot 19 .
\end{array}
$$

2. [10 pts] Solve the congruence $575 x \equiv 5 \bmod 1720$. Show clear work.

$$
\begin{array}{rlll}
575 x & \equiv & 5 & \bmod 1720 \\
\div 5 & & \div 5 & \div(1720,5) \\
115 x & & 1 & \bmod 344 \\
\times 3 & \times 3 & \\
x & \equiv & 3 \quad \bmod 344 \\
x \equiv 3, & 347, & 691, & 1035, \\
1379 \bmod 1720
\end{array}
$$

3. [15 pts] Solve this system of congruences by your choice of method, showing clear work:

$$
\begin{array}{rll}
x & \equiv 1 & \bmod 5 \\
x & \equiv 2 & \bmod 6 \\
x & \equiv 3 & \bmod 7
\end{array}
$$

Applying the proof technique for the Chinese Remainder Theorem produces this solution: Our final modulus is $M=5 \cdot 6 \cdot 7=210$. The first term of the solution formula requires $M_{1}=6 \cdot 7=42$, and we find its inverse $x_{1} \bmod 5$ via

$$
42 x_{1} \equiv 1 \quad \bmod 5 \Longrightarrow 2 x_{1} \equiv 1 \Longrightarrow 3\left(2 x_{1}\right) \equiv 3(1) \Longrightarrow x_{1} \equiv 3 \quad \bmod 5
$$

The second term requires $M_{2}=5 \cdot 7=35$, and its inverse $x_{2} \bmod 6$:

$$
35 x_{2} \equiv 1 \quad \bmod 6 \Longrightarrow-x_{2} \equiv 1 \Longrightarrow x_{2} \equiv-1 \Longrightarrow x_{2} \equiv 5 \bmod 6
$$

The third and final term requires $M_{3}=5 \cdot 6=30$, and its inverse $x_{3} \bmod 7$:

$$
30 x_{3} \equiv 1 \quad \bmod 7 \Longrightarrow 2 x_{3} \equiv 1 \Longrightarrow 4\left(2 x_{3}\right) \equiv 4(1) \Longrightarrow x_{3} \equiv 4 \quad \bmod 7
$$

The solution is

$$
x=(1)(42)(3)+(2)(35)(5)+(3)(30)(4)=836 \equiv 206 \bmod 210 .
$$

Applying back-substitution produces this solution:

$$
\begin{aligned}
x \equiv 1 \bmod 5 & \Longrightarrow x=5 k+1 \text { for some } k \in \mathbf{Z} \\
x \equiv 2 \bmod 6 & \Longrightarrow 5 k+1 \equiv 2 \bmod 6 \\
& \Longrightarrow 5 k \equiv 1 \bmod 6 \\
& \Longrightarrow 5(5 k) \equiv 5(1) \bmod 6 \\
& \Longrightarrow k \equiv 5 \bmod 6 \\
& \Longrightarrow k=6 m+5 \text { for some } m \in \mathbf{Z} \\
x \equiv 3 \bmod 7 & \Longrightarrow 30 m+26 \equiv 3 \bmod 7 \\
& \Longrightarrow 2 m-2 \equiv 3 \bmod 7 \\
& \Longrightarrow 2 m \equiv 5 \quad \bmod 7 \\
& \Longrightarrow 4(2 m) \equiv 4(5) \bmod 7 \\
& \Longrightarrow m \equiv 20 \equiv 6 \bmod 7 \\
& \Longrightarrow x=7 n+6 \text { for } \operatorname{some} n \in \mathbf{Z} \\
& \Longrightarrow x \equiv 20(7 n+6)+26=210 n+206 \text { for some } n \in \mathbf{Z} \\
& \Longrightarrow m o d 210
\end{aligned}
$$

4. [10 pts] Find the least nonnegative residue of each number below. Show clear work; indicate how you apply any named theorems.
(a) $23^{33} \bmod 31$

Because 31 is prime and $23 \in \mathbf{Z}$, we apply the corollary to Fermat's Little Theorem to see that $23^{31} \equiv 23 \bmod 31$. Then $23^{33} \equiv 23^{31} \cdot 23^{2} \equiv 23^{3}=12167 \equiv 15 \bmod 31$.
(b) $23^{33} \bmod 48$

Because $(23,48)=1$ and $\phi(48)=\phi\left(2^{4} \cdot 3\right)=\phi\left(2^{4}\right) \cdot \phi(3)=\left(2^{4}-2^{3}\right)(2)=2^{4}=16$, we apply Euler's Theorem to see that $23^{16} \equiv 1 \bmod 48$. Then $23^{33}=\left(23^{16}\right)^{2} \cdot 23 \equiv$ $1 \cdot 23=23 \bmod 48$.
5. [10 pts] Find three solutions with $x \geq 0$ for the diophantine equation $45 x+75 y=210$.

The gcd of 45 and 75 is 15, and we can write $45(2)+75(-1)=15$. Multiplying this equality by 14 yields $45(28)+75(-14)=210$. We can now add and subtract the lcm of 45 and 75 , which is 225 , to obtain further solutions. Those solutions having $x \geq 0$ are listed in increasing order of x below:

$$
\begin{array}{rl}
x=3 & y=1 \\
x=8 & y=-2 \\
x=13 & y=-5 \\
x=18 & y=-8 \\
x=23 & y=-11 \\
x=28 & y=-14 \\
x=33 & y=-17 \\
x=38 & y=-20
\end{array}
$$

6. [10 pts] Find one primitive and two nonprimitive Pythagorean triples involving the number 85 . Show clear work.

There is one primitive triple for which $85=m^{2}+n^{2}-$ namely, when $m=7$ and $n=6$. This yields a triple of $x=7^{2}-6^{2}=13, y=2(7)(6)=84, z=85$. There is also at least one triple for which $85=m^{2}-n^{2}-$ namely, when $m=43$ and $n=42-$ yielding $x=85, y=2(43)(42)=3612, z=43^{2}+42^{2}=3613$. So the most immediate primitive triples are

$$
(13,84,85) \text { and }(85,3612,3613)
$$

Nonprimitive triples can be built upon triples involving the factors 5 or 17 of 85 . For 5 , the familiar triple of $(3,4,5)$, the only one having $5=m^{2}+n^{2}$, can be multiplied by 17 , or the other primitive triple $(5,12,13)$ - in which $5=2^{2}+1^{2}$, and the only one expressing 5 as a difference of squares - can be similarly multiplied. For 17, we may use either the triple $(15,8,17)$ - where $m=4$ and $n=1$, and the only one having $17=m^{2}+n^{2}-$ or ($17,144,145$), having $m=9$ and $n=8$, unique in having $17=m^{2}-n^{2}$. Each can be multiplied by 5. Thus, the only nonprimitive triples involving 85 are

$$
(51,68,85), \quad(85,204,221), \quad(75,40,85), \quad \text { and }(85,720,725)
$$

7. [10 pts] Define an arithmetic function $f(n)=\sum_{d \mid n, d>0} \sigma(d)$. Compute $f(18)$.

$$
f(18)=\sigma(1)+\sigma(2)+\sigma(3)+\sigma(6)+\sigma(9)+\sigma(18)=1+3+4+6+13+39=66
$$

8. [15 pts] Let n be an integer that is not divisible by 7 . Prove that if $n^{3} \equiv n \bmod 21$, then n is its own inverse mod 7 .

By definition of congruence, we have that $21 \mid n^{3}-n$. By transitivity, then (since $7 \mid 21$), $7 \mid n^{3}-n$, which factors as $n\left(n^{2}-1\right)$. because 7 is prime, it must divide n or $n^{2}-1$, yet by assumption, it does not divide n. Therefore, $7 \mid n^{2}-1$, whence $n^{2} \equiv 1 \bmod 7$, showing that n is its own inverse mod 7 .
9. [15 pts] Let $a, b, c \in \mathbf{Z}$. Prove that $(a, c)=(b, c)=1$ if and only if $(a b, c)=1$.
\Longrightarrow Let $(a, c)=(b, c)=1$. By alternative definition, there exist integers x, y, z, w such that $a x+c y=1$ and $b z+c w=1$. Multiplying these two equalities creates $(a x+c y)(b z+c w)=1$, or $a b(x z)+c(a x w+b y z+x y w)=1$. Since $x z, a x w+b y z+x y w \in \mathbf{Z}$ by closure, we have an integer linear combination of ab and c that equals 1, whence $(a b, c)=1$.
$\Longleftarrow:$ Assume that $(a b, c)=1$. By alternative definition, there exist $p, q \in \mathbf{Z}$ with $a b p+c q=1$. Rewriting this equality as $a(b p)+c q=1$ shows that $(a, c)=1$, for $b p \in \mathbf{Z}$ by closure and $q \in \mathbf{Z}$ by assumption. Similarly, $(b, c)=1$ from $b(a p)+c q=1$ with $a p \in \mathbf{Z}$ by closure and $q \in \mathbf{Z}$ by assumption.
10. [15 pts] Prove that if n is a positive integer greater than 1 , then n has a prime factorization.

Suppose to the contrary that there exist integers greater than 1 having no prime factorization. By the Well-Ordering Principle, there exists a smallest such integer; call it n. We see that n cannot be prime, for then it would be its own prime factorization. Thus, n is composite and can be expressed as $n=a b$ where $1<a, b<n$. Because n is the smallest integer greater than 1 that lacks a prime factorization, both a and b must have one. But then their product n may be expressed as the product of their prime factorizations, creating one for n. By contradiction, then, no n as described can exist, so that every integer greater than 1 has a prime factorization.
11. [15 pts] Let p and $p-4$ be primes. Prove that $4(p-1)!-p \equiv-4 \bmod p(p-4)$.

Consider the congruence mod p alone first. By Wilson's Theorem, since p is prime, we have that $(p-1)!\equiv-1 \bmod p$. Then

$$
4(p-1)!-p \equiv 4(-1)-0 \equiv-4 \quad \bmod p
$$

Next consider the congruence mod $p-4$ alone. Then $p-1)!=(p-1)(p-2)(p-3)(p-$ $4)(p-5)!\equiv(p-1)(p-2)(p-3) \cdot 0 \cdot(p-5)!=0 \bmod p-4$, whence

$$
4(p-1)!-p \equiv 0-(+4) \equiv-4 \quad \bmod p-4
$$

Because p and p-4 are prime, they are relatively prime to each other, so that because the congruence holds true for each separately, it is also true $\bmod p(p-4)$.
12. [15 pts] Let $n \in \mathbf{Z}^{+}$. Prove that $\phi\left(\phi\left(3^{n}\right)\right)=\frac{2}{3} \phi\left(3^{n}\right)$.

Note that

$$
\begin{aligned}
\phi\left(\phi\left(3^{n}\right)\right) & =\phi\left(3^{n}-3^{n-1}\right) \\
& =\phi\left(3^{n-1}(3-1)\right) \\
& =\phi\left(3^{n-1} \cdot 2\right) \\
& =\left(3^{n-1}-3^{n-2}\right) \cdot 1 \\
& =3^{n-1}\left(1-\frac{1}{3}\right) \cdot 1 \\
& =\frac{2}{3} \cdot 3^{n-1}
\end{aligned}
$$

(Observe that $n \geq 2$ else $\phi\left(3^{n-1}\right)$ is undefined.) Now

$$
\begin{aligned}
\frac{2}{3} \phi\left(3^{n}\right) & =\frac{2}{3}\left(3^{n}-3^{n-1}\right) \\
& =\frac{2}{3} \cdot 3^{n-1}(3-1) \\
& =\frac{4}{3} \cdot 3^{n-1}
\end{aligned}
$$

Oops! These two formulae are not equal, so the result is not confirmed. The correct formula should have had a coefficient of $\frac{1}{3}$, not $\frac{2}{3}$.

