
Math 320 - Dr. Miller - Solutions to Final Exam - May 6, 2008

1. [10 pts] Find all pairs of positive integers a and b for which (a, b) = 172 · 19 and
[a, b] = 13 · 173 · 192. Show clear work.

Because (a, b) = 172 · 19 is a common factor, both numbers must contain this prime
factorization. The remaining prime factors of [a, b] = 13 · 173 · 192 – namely, the extra
13, 17, and 19 – can be shared between a and b in any combination. Thus, we obtain
these options:

a = 172 · 19 b = 13 · 173 · 192

a = 13 · 172 · 19 b = 173 · 192

a = 173 · 19 b = 13 · 172 · 192

a = 172 · 192 b = 13 · 173 · 19.

2. [10 pts] Solve the congruence 575x ≡ 5 mod 1720. Show clear work.

575x ≡ 5 mod 1720
÷5 ÷5 ÷(1720, 5)

115x 1 mod 344
×3 ×3

x ≡ 3 mod 344

x ≡ 3, 347, 691, 1035, 1379 mod 1720

3. [15 pts] Solve this system of congruences by your choice of method, showing clear work:

x ≡ 1 mod 5

x ≡ 2 mod 6

x ≡ 3 mod 7

Applying the proof technique for the Chinese Remainder Theorem produces this solution:
Our final modulus is M = 5 · 6 · 7 = 210. The first term of the solution formula requires
M1 = 6 · 7 = 42, and we find its inverse x1 mod 5 via

42x1 ≡ 1 mod 5 =⇒ 2x1 ≡ 1 =⇒ 3(2x1) ≡ 3(1) =⇒ x1 ≡ 3 mod 5.

The second term requires M2 = 5 · 7 = 35, and its inverse x2 mod 6:

35x2 ≡ 1 mod 6 =⇒ −x2 ≡ 1 =⇒ x2 ≡ −1 =⇒ x2 ≡ 5 mod 6.



The third and final term requires M3 = 5 · 6 = 30, and its inverse x3 mod 7:

30x3 ≡ 1 mod 7 =⇒ 2x3 ≡ 1 =⇒ 4(2x3) ≡ 4(1) =⇒ x3 ≡ 4 mod 7.

The solution is

x = (1)(42)(3) + (2)(35)(5) + (3)(30)(4) = 836 ≡ 206 mod 210.

Applying back-substitution produces this solution:

x ≡ 1 mod 5 =⇒ x = 5k + 1 for some k ∈ Z

x ≡ 2 mod 6 =⇒ 5k + 1 ≡ 2 mod 6

=⇒ 5k ≡ 1 mod 6

=⇒ 5(5k) ≡ 5(1) mod 6

=⇒ k ≡ 5 mod 6

=⇒ k = 6m + 5 for some m ∈ Z

=⇒ x = 5(6m + 5) + 1 = 30m + 26 for some m ∈ Z

x ≡ 3 mod 7 =⇒ 30m + 26 ≡ 3 mod 7

=⇒ 2m − 2 ≡ 3 mod 7

=⇒ 2m ≡ 5 mod 7

=⇒ 4(2m) ≡ 4(5) mod 7

=⇒ m ≡ 20 ≡ 6 mod 7

=⇒ m = 7n + 6 for some n ∈ Z

=⇒ x = 30(7n + 6) + 26 = 210n + 206 for some n ∈ Z

=⇒ x ≡ 206 mod 210

4. [10 pts] Find the least nonnegative residue of each number below. Show clear work;
indicate how you apply any named theorems.

(a) 2333 mod 31

Because 31 is prime and 23 ∈ Z, we apply the corollary to Fermat’s Little Theorem
to see that 2331 ≡ 23 mod 31. Then 2333 ≡ 2331 · 232 ≡ 233 = 12167 ≡ 15 mod 31.

(b) 2333 mod 48

Because (23, 48) = 1 and φ(48) = φ(24 · 3) = φ(24) · φ(3) = (24 − 23)(2) = 24 = 16,
we apply Euler’s Theorem to see that 2316 ≡ 1 mod 48. Then 2333 = (2316)2 · 23 ≡
1 · 23 = 23 mod 48.



5. [10 pts] Find three solutions with x ≥ 0 for the diophantine equation 45x + 75y = 210.

The gcd of 45 and 75 is 15, and we can write 45(2) + 75(−1) = 15. Multiplying this
equality by 14 yields 45(28) + 75(−14) = 210. We can now add and subtract the lcm of
45 and 75, which is 225, to obtain further solutions. Those solutions having x ≥ 0 are
listed in increasing order of x below:

x = 3 y = 1

x = 8 y = −2

x = 13 y = −5

x = 18 y = −8

x = 23 y = −11

x = 28 y = −14

x = 33 y = −17

x = 38 y = −20
...

...

6. [10 pts] Find one primitive and two nonprimitive Pythagorean triples involving the
number 85. Show clear work.

There is one primitive triple for which 85 = m2 +n2 – namely, when m = 7 and n = 6.
This yields a triple of x = 72 − 62 = 13, y = 2(7)(6) = 84, z = 85. There is also at
least one triple for which 85 = m2 − n2 – namely, when m = 43 and n = 42 – yielding
x = 85, y = 2(43)(42) = 3612, z = 432 + 422 = 3613. So the most immediate primitive
triples are

(13, 84, 85) and (85, 3612, 3613).

Nonprimitive triples can be built upon triples involving the factors 5 or 17 of 85. For 5,
the familiar triple of (3, 4, 5), the only one having 5 = m2 + n2, can be multiplied by 17,
or the other primitive triple (5, 12, 13) – in which 5 = 22+12, and the only one expressing
5 as a difference of squares – can be similarly multiplied. For 17, we may use either the
triple (15, 8, 17) – where m = 4 and n = 1, and the only one having 17 = m2 + n2 – or
(17, 144, 145), having m = 9 and n = 8, unique in having 17 = m2 − n2. Each can be
multiplied by 5. Thus, the only nonprimitive triples involving 85 are

(51, 68, 85), (85, 204, 221), (75, 40, 85), and (85, 720, 725).

7. [10 pts] Define an arithmetic function f(n) =
∑

d|n,d>0 σ(d). Compute f(18).

f(18) = σ(1) + σ(2) + σ(3) + σ(6) + σ(9) + σ(18) = 1 + 3 + 4 + 6 + 13 + 39 = 66



8. [15 pts] Let n be an integer that is not divisible by 7. Prove that if n3 ≡ n mod 21,
then n is its own inverse mod 7.

By definition of congruence, we have that 21 | n3−n. By transitivity, then (since 7 | 21),
7 | n3 − n, which factors as n(n2 − 1). because 7 is prime, it must divide n or n2 − 1,
yet by assumption, it does not divide n. Therefore, 7 | n2 − 1, whence n2 ≡ 1 mod 7,
showing that n is its own inverse mod 7.

9. [15 pts] Let a, b, c ∈ Z. Prove that (a, c) = (b, c) = 1 if and only if (ab, c) = 1.

=⇒: Let (a, c) = (b, c) = 1. By alternative definition, there exist integers x, y, z, w
such that ax + cy = 1 and bz + cw = 1. Multiplying these two equalities creates
(ax+cy)(bz+cw) = 1, or ab(xz)+c(axw+byz+xyw) = 1. Since xz, axw+byz+xyw ∈ Z
by closure, we have an integer linear combination of ab and c that equals 1, whence
(ab, c) = 1.

⇐=: Assume that (ab, c) = 1. By alternative definition, there exist p, q ∈ Z with
abp+ cq = 1. Rewriting this equality as a(bp)+ cq = 1 shows that (a, c) = 1, for bp ∈ Z
by closure and q ∈ Z by assumption. Similarly, (b, c) = 1 from b(ap) + cq = 1 with
ap ∈ Z by closure and q ∈ Z by assumption.

10. [15 pts] Prove that if n is a positive integer greater than 1, then n has a prime factor-
ization.

Suppose to the contrary that there exist integers greater than 1 having no prime fac-
torization. By the Well-Ordering Principle, there exists a smallest such integer; call it
n. We see that n cannot be prime, for then it would be its own prime factorization.
Thus, n is composite and can be expressed as n = ab where 1 < a, b < n. Because
n is the smallest integer greater than 1 that lacks a prime factorization, both a and b
must have one. But then their product n may be expressed as the product of their prime
factorizations, creating one for n. By contradiction, then, no n as described can exist,
so that every integer greater than 1 has a prime factorization.

11. [15 pts] Let p and p − 4 be primes. Prove that 4(p − 1)! − p ≡ −4 mod p(p − 4).

Consider the congruence mod p alone first. By Wilson’s Theorem, since p is prime, we
have that (p − 1)! ≡ −1 mod p. Then

4(p − 1)! − p ≡ 4(−1) − 0 ≡ −4 mod p.



Next consider the congruence mod p− 4 alone. Then p− 1)! = (p− 1)(p− 2)(p− 3)(p−
4)(p − 5)! ≡ (p − 1)(p − 2)(p − 3) · 0 · (p − 5)! = 0 mod p − 4, whence

4(p − 1)! − p ≡ 0 − (+4) ≡ −4 mod p − 4.

Because p and p − 4 are prime, they are relatively prime to each other, so that because
the congruence holds true for each separately, it is also true mod p(p − 4).

12. [15 pts] Let n ∈ Z+. Prove that φ(φ(3n)) = 2
3
φ(3n).

Note that

φ(φ(3n)) = φ(3n − 3n−1)

= φ(3n−1(3 − 1))

= φ(3n−1 · 2)
= (3n−1 − 3n−2) · 1

= 3n−1(1 − 1

3
) · 1

=
2

3
· 3n−1

(Observe that n ≥ 2 else φ(3n−1) is undefined.) Now

2

3
φ(3n) =

2

3
(3n − 3n−1)

=
2

3
· 3n−1(3 − 1)

=
4

3
· 3n−1

Oops! These two formulae are not equal, so the result is not confirmed. The correct
formula should have had a coefficient of 1

3
, not 2

3
.


