Always work homework on your own paper; staple the question sheet to the front with your name on it.

1. For each matrix below, write the standard $M_{n \times m}(S)$ notation for a specific set to which it belongs; however, the puzzle is that you are limited to using \mathbb{Z}, \mathbb{Z}^+, \mathbb{Q}, \mathbb{Q}^+, \mathbb{R}, \mathbb{R}^+, and \mathbb{C} no more than once each in this problem.

 \begin{align*}
 (a) \begin{bmatrix}
 3.3 & -1 \\
 0 & -8.76
 \end{bmatrix} & \quad (b) \begin{bmatrix}
 \sqrt[3]{2} & 1 & 1.28 \\
 1.8 & -8 & -\sqrt{8}
 \end{bmatrix} & \quad (c) \begin{bmatrix}
 3.2 & 1 & -3.3 \\
 1.8 & -8 & -3.232232223 \ldots & 0
 \end{bmatrix} \\
 \end{align*}

2. Perform the following computations in \mathbb{C}.

 \begin{align*}
 (a) \; & (i - 2)^3 & \quad (b) \; & \frac{8 - 3i}{2 + i} & \quad (c) \; & \frac{i - 9}{(1 - i)^2}
 \end{align*}

3. Perform the following computations if possible; if not possible, say why.

 \begin{align*}
 (a) \begin{bmatrix}
 4.2 & 8.6 & 0 \\
 5.2 & 2.1 & 8.7
 \end{bmatrix} + \begin{bmatrix}
 3.2 & 1 & 0 \\
 1.8 & 8 & 2.4
 \end{bmatrix} & \quad (b) \begin{bmatrix}
 4.2 & 8.6 & 0 \\
 5.2 & 2.1 & 8.7
 \end{bmatrix} \begin{bmatrix}
 3.2 & 1 & 0 \\
 1.8 & 8 & 2.4
 \end{bmatrix} \\
 \end{align*}

4. In this course, we will use without proof several claims listed below about closure for certain familiar sets. In this problem, however, I want you to dust off your Modern Concepts proof-writing skills and actually PROVE a small sample of these claims.

 (a) \mathbb{Q} is closed under addition, subtraction, multiplication, and non-zero division. Formally prove that \mathbb{Q} is closed under subtraction.

 (b) $M_{n \times m}(S)$ is closed under addition and subtraction when $S = \mathbb{Z}$, \mathbb{Q}, \mathbb{R}, or \mathbb{C}, and $M_{n \times n}(S)$ is closed under multiplication for these same sets S. Formally prove that $M_{2 \times 2}(\mathbb{Z}^+)$ is closed under multiplication.

 (c) \mathbb{C} is closed under addition, subtraction, multiplication, and non-zero division. Formally prove that \mathbb{C} is closed under non-zero division.

5. On Friday we’ll have a quick in-class quiz about which sets are closed and under which operations. The statements in Question #4 will be fair game, as will your responses to the items on the back. Practice by circling the correct response in each case.
(a) Under ordinary addition, \(\mathbb{Z} \) \(IS IS NOT \) closed.
(b) Under ordinary subtraction, \(\mathbb{Z} \) \(IS IS NOT \) closed.
(c) Under ordinary multiplication, \(\mathbb{Z} \) \(IS IS NOT \) closed.
(d) Under ordinary division, \(\mathbb{Z} \) \(IS IS NOT \) closed.

(e) Under ordinary addition, \(\mathbb{Z} \setminus \{0\} \) \(IS IS NOT \) closed.
(f) Under ordinary subtraction, \(\mathbb{Z} \setminus \{0\} \) \(IS IS NOT \) closed.
(g) Under ordinary multiplication, \(\mathbb{Z} \setminus \{0\} \) \(IS IS NOT \) closed.
(h) Under ordinary division, \(\mathbb{Z} \setminus \{0\} \) \(IS IS NOT \) closed.

(i) Under ordinary addition, \(\mathbb{Q} \) \(IS IS NOT \) closed.
(j) Under ordinary subtraction, \(\mathbb{Q} \) \(IS IS NOT \) closed.
(k) Under ordinary multiplication, \(\mathbb{Q} \) \(IS IS NOT \) closed.
(l) Under ordinary division, \(\mathbb{Q} \) \(IS IS NOT \) closed.

(m) Under ordinary addition, \(\mathbb{Q} \setminus \{0\} \) \(IS IS NOT \) closed.
(n) Under ordinary subtraction, \(\mathbb{Q} \setminus \{0\} \) \(IS IS NOT \) closed.
(o) Under ordinary multiplication, \(\mathbb{Q} \setminus \{0\} \) \(IS IS NOT \) closed.
(p) Under ordinary division, \(\mathbb{Q} \setminus \{0\} \) \(IS IS NOT \) closed.

(q) Under ordinary addition, \(\mathbb{R} \) \(IS IS NOT \) closed.
(r) Under ordinary subtraction, \(\mathbb{R} \) \(IS IS NOT \) closed.
(s) Under ordinary multiplication, \(\mathbb{R} \) \(IS IS NOT \) closed.
(t) Under ordinary division, \(\mathbb{R} \) \(IS IS NOT \) closed.

(u) Under ordinary addition, \(\mathbb{R} \setminus \{0\} \) \(IS IS NOT \) closed.
(v) Under ordinary subtraction, \(\mathbb{R} \setminus \{0\} \) \(IS IS NOT \) closed.
(w) Under ordinary multiplication, \(\mathbb{R} \setminus \{0\} \) \(IS IS NOT \) closed.
(x) Under ordinary division, \(\mathbb{R} \setminus \{0\} \) \(IS IS NOT \) closed.

(y) Under ordinary addition, \(\mathbb{R^+} \) \(IS IS NOT \) closed.
(z) Under ordinary subtraction, \(\mathbb{R^+} \) \(IS IS NOT \) closed.
(a) Under ordinary multiplication, \(\mathbb{R^+} \) \(IS IS NOT \) closed.
(b) Under ordinary division, \(\mathbb{R^+} \) \(IS IS NOT \) closed.