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Friday, March 24th 

Time Event 

2:00PM – 5:45PM Check In – SciTech Bldg 1st Floor Lobby 

3:00PM – 6:00PM 
Student Presentations – Undergraduate 

SciTech Room 356 
Chairs:  Jeyaprakash Chelladurai/Dale Parson 

Student Presentations – Graduate 
SciTech Room 355 

Chair:  Minhaz Chowdhury 

3:00 – 3:30PM 
Position Information with Neural Network – 

Joshua Lewis 

Classification of Risk Level for Morbidity and Cesarean 
Sections Based on Materials Risk Factor –  

 Sara Trabelsi 

3:30 – 4:00PM 
Comparative Study of Outlier Detection Techniques for 

Credit Card Fraud – Rachel B. Shirey 
Comparative Study of Multivariate Time Series 

Forecasting Algorithms – Bradley Betts 

4:00 – 4:30PM  Poster Session – SciTech 3rd Floor Lobby 

4:30 – 5:00PM 
MalloT: Scalable and Real-time Malware Traffic 
Detection for IoT Networks – Ethan Weitkamp 

University Chatbot: A journey into cloud-native 
development – Brian Montecinos-Velazquez 

5:00 – 5:30PM 
Machine Learning Techniques to Improve Users' Music 

Listening Experiences – Samantha J. Noggle 
Rust: A deep dive – Joseph Cutrone 

5:30 – 6:00PM 
Combining Unsupervised and Supervised Learning for 

Credit Card Fraud Detection – Briar Sauble 
N/A 

6:00 – 7:15PM Dinner – Dansbury Commons 

7:30 – 8:30PM 

Keynote Address  
SciTech Bldg Auditorium (First Floor – Room 117) 
Title:  Vulnerabilities, Fairy Tales and Persistence 

Speaker:  Mr. Douglas McKee 
Welcoming Remarks:  President Kenneth Long 

8:30PM -??? 
Programming Contest Setup and Practice 

SciTech Rooms 137/138 
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Saturday, March 25th 

Time Event 

8:30 – 10:00AM Check In – SciTech Bldg 1st Floor Lobby 

8:30 – 10:00AM 
PACISE Executive Board Meeting  

SciTech – 3rd Floor Computer Science Conference Room 

 
Paper Presentations – Faculty  

SciTech Room 356 
Chairs: Chad Hogg/Liu Cui 

Special Presentations 
SciTech Room 355 

Chairs:  Dongsheng Che/ 
Stephanie Schwartz 

Programming Contest 
SciTech Rooms 137/138 

8:30 – 9:00AM N/A N/A Team Check In 

9:00 – 9:30AM 

On the Impossibility of Directly Proving 
or Disproving the Collatz Conjecture 

Using a Computer Program – 
Brandon Packard 

Developing Mobile Learning Application 
based on Adaptive UIs – Kwang Lee 

Contest 
In-Progress 
9:00AM – 11:30AM 

9:30 – 10:00AM 
Modelling a Microsurgical Suture in 

Unity – Justin Stevens 
Cathalla - A fighting game built  

in Godot – Iain Turner 

10:00 – 10:15AM Break 

10:15 – 10:45AM 
Analyzing Game data from the board 

game Tsuro – Brandon Packard 

IoT and Blockchain Integration:  
Is Blockchain a panacea? –  

Naresh Adhikari 

10:45 – 11:15AM 
Improving students' programming skills 

by implementing a University-wide 
programming contest – Liu Cui 

3D Printing of Customized Facemasks 
and PPE – Jack Leidemann 

11:15 – 11:45PM 
Object-oriented creative coding for 
digital art students – Dale Parson 

Quaternions In the Use of Three-
Dimensional Rotation –  

Lukas Goodman 
 

12:00 – 1:00PM Lunch – Dansbury Commons 

1:00 – 2:00PM 

General Meeting – SciTech Auditorium  
Discussions  

Award Presentations  
Announcements 

Adjourn 
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Douglas McKee is a Principal Engineer and the Director of Vulnerability Research for Trellix 
Advanced Research Center, where he and his team focus on finding new vulnerabilities in both 
software and hardware. 
 
Douglas has an extensive background in vulnerability research, penetration testing, reverse 
engineering, malware analysis and forensics, and throughout his career has provided software 
exploitation training to many audiences, including law enforcement. 
 
Doug is a regular speaker at industry conferences such as DEF CON, Hardware.IO and RSA, and 
his research is regularly featured in publications with broad readership including Politico, 
Bleeping Computer, Security Boulevard, Venture Beat, CSO, Politico Morning eHealth, Tech 
Republic, and Axios. (Source: https://www.esu.edu/pacise/) 
 
   



BEST PAPER AWARDS 
 
Best Faculty Paper:  

Modelling a Microsurgical Suture in Unity 
Justin Stevens , Chad Hogg , Evan Hanzelman , Brian Smith , Joseph Sassani 
Millersville University 

 
Best Graduate Paper: 

University Chatbot: A journey into Cloud-Native Development 
Brian Montecinos-Velazquez, Dominic Pisano, Jared Miller, Harrison Kahl, 
Nicholas Hines, Tyler Profitt, Dominic Spampinato, and Linh B. Ngo 
West Chester University of Pennsylvania, Department of Computer Science 

 
Best Undergrad Paper:  

MalIoT: Scalable and Real-time Malware Traffic Detection for IoT Networks  
Ethan Weitkamp, Yusuke Satani, Adam Omundsen, Jingwen Wang, Peilong Li 
Elizabethtown College, Computer Science Department 

 
 

PROGRAMMING COMPETITION WINNERS 
 
First Place:    

Millersville University (Team Name: Millersville-1) 
 Trever Bender 
 Marshall Feng 
 Samantha Noggle 

 
Second Place: 

West Chester University (Team Name:  Byte Me) 
 Mary Bauman 
 Nolan Prochnau 
 James May 

 
Third Place:   

East Stroudsburg University (Team Name:  PT-1) 
 Jonathan Hillanbrand 
 Roshe Ford 
 Daniel Sorrentino 

 



IMPROVING STUDENTS’ PROGRAMMING SKILLS BY IMPLEMENTING
A UNIVERSITY-WIDE PROGRAMMING CONTEST

Jongwook Kim, Si Chen, Liu Cui
West Chester University

{jkim2, schen, lcui}@wcupa.edu

ABSTRACT
Programming is becoming the new literacy; a fundamental
skill that everyone should learn. One of the essential skills
for programmers is the ability to learn a set of well-defined in-
structions (i.e., algorithm), and apply them to other problems.
To help students improve their programming skills, we pro-
vide a university-wide programming contest that is designed
by students and for students. We hire student judges and help
them create contest problems on an online judging (OJ) sys-
tem, as well as organize the competition event. In this paper,
we explain our programming contest’s format and rules that
we designed for undergraduate students, and discuss how ef-
ficiently and effectively we operate the programming contest
by utilizing our OJ system.

1 Introduction

Programming is a fundamental skill required for most areas.
Many departments request students to have basic program-
ming skills. For example, physics, chemistry, and mathemat-
ics students use programs for data analysis. Business school
students write programs to better plan their project. Even
music school students use programs to compose symphonies.
Many information technology (IT) companies also use pro-
gramming questions at the first round of a job interview to
check applicants’ capability of logical thinking and problem-
solving skills.

With years of teaching computer science courses at colleges,
we have noticed a large gap between programming skills that
students can learn from course assignments and those that
they need for a technical interview or at work. Many factors
contribute to this gap. First, programming requires a wide
range of skills and knowledge to solve a problem. Assign-
ments alone are far from enough. Second, problems vary a
lot, and the course assignments cannot cover all or even most
of them. Third, interview is a timed process, which is differ-
ent from assignments where students are not constrained with
time and can find help in many places. For those reasons, stu-
dents need more programming experiences with solving non-
trivial problems that can stress their capability of finding an
optimal solution among infinitely many.

To bridge the gap, we provided continuous extra curriculum

activities for students to sharpen their programming skills.
One of them is a university-wide programming contest for
students who are less-experienced in programming. A unique
part of our contest, called West Chester University Program-
ming Contest (WCPC) [1], is that it is designed by students
and for students. We (faculty) recruit student judges who cre-
ate contest problems with test cases, guide them in managing
our online judging (OJ) system [2], and help them prepare the
competition event. In this paper, we explain our programming
contest’s format and rules that we designed for undergradu-
ate students, and discuss how efficiently and effectively we
operate the programming contests by utilizing an OJ system.

2 Programming Contest Rules and Format

Most computer science departments are running a com-
petitive programming student club for preparing students
for nation-wide programming competitions like International
Collegiate Programming Contest (ICPC) [3]. Unfortunately,
not many students are benefited from the club activities since
they mainly target on a small number of high-level students,
not the majority of students who need improvements on their
programming skills. We adopted many of the ICPC’s format
and rules but designed our programming contest for the “first
time” contestants who are less-experienced in programming.

2.1 Level of Programming Questions

Unlike most programming competitions, we make the level
of programming questions range from “very easy” to “easy”
comparing to LeetCode [4] problems and require only lim-
ited programming experience. The main reason for doing so
is that we aim to motivate under-performing students to put
more time and effort in programming and encourage them to
participate in more forthcoming competitions. We do rank
contestants based on (i) the number of problems they solved
correctly and (ii) total time they spent on all accepted sub-
missions. However, the purpose of counting the number of
correct submissions is not for us (faculty) to judge students’
programming skills or rank them based on their performance.
Our goal is to encourage many more average students to
challenge easy questions and improve their computer science
problem solving skills while they prepare for the contests.



For that reason, we allow students to bring any printed mate-
rial they wish, including books, language reference manuals,
code printouts, previous contest problems and solutions, and
they are provided with sample questions from previous con-
tests. The only restriction is that external electronic data (e.g.,
Internet, USB flash drives) is disallowed during a contest. In
section 4.1, we discuss that our approach is supported by that
the correct submission rate significantly increased between
contests in March and October 2022.

2.2 Rewarding Student Judges and Contestants

A unique part of our contests is that they are designed by
students and for students. Our student judges create pro-
gramming problems for contests, validate submissions with
using with test cases, manage our OJ system, and prepare
the overall competition event under faculty’s guidance. The
opportunity to serve as a student judge is selectively given to
only those who have completed all introductory programming
courses and the data structures & algorithms course with a
letter grade B+ or above. Their service is rewarded $100 per
competition.

Contestants are also rewarded with prizes for their participa-
tion. First, they receive $5 amazon gift card for each solved
problem regardless of ranking. Second, students can add their
programming competition experience on their resume with
another line. Free pizza and soft drinks are provided during
the competition.

3 Online Judging System

The implementation of university-wide programming con-
tests is a crucial aspect in enhancing students’ programming
skills and self-efficacy. In order to achieve the maximum
benefits of these events, it is imperative to have a well-
functioning OJ system. Our OJ system [2] offers students
real-time feedback on their submissions, allowing for the
tracking of their progress and identification of areas for im-
provement. Additionally, the OJ system tests the edge cases
of students’ submissions, ensuring the robustness of their so-
lutions and avoiding costly dead-loops and incorrect imple-
mentations.

Having control over the problems and associated settings
through the use of an in-house OJ system guarantees fair-
ness and allows for customization to meet the specific needs
of the university. This versatile tool can be utilized for a
range of programming-related assessments, including prac-
tices, competitions, homework assignments, and club activ-
ities. The analysis of student submissions and performance
through our OJ system provides valuable insights, which can
be used to develop targeted interventions to support students’
growth and enhance their programming skills.

Moreover, the OJ system offers numerous advantages over
traditional paper-based programming competitions. It elimi-

Figure 1: Average Success Submission Rate by Contest.

nates manual grading and ensures that all solutions are thor-
oughly tested using a set of predefined test cases. Students
receive real-time feedback on their submissions including the
specific test cases that their solution failed, allowing for a bet-
ter understanding of the requirements and constraints of each
problem. The OJ system also provides a level playing field
for all students, as it eliminates the possibility of human error
in grading and ensures that all solutions are evaluated using
the same set of test cases.

Using the OJ system, in general, each department can also
easily tailor programming competitions and practices to meet
their own requirements. In this way, not only computer sci-
ence students, but all students can practice programming ei-
ther on campus or through remote log in.

4 Evaluation of Submission Data

We present an evaluation of the student submission data col-
lected from our OJ system. With a total of 507 submissions
(from a total of 55 contestants), we aim to gain insights into
the performance of the students and the quality of the prob-
lems in the contest. To achieve this, we have selected three
key metrics – success rate per contest, error analysis, and
success rate per problem – which provide a comprehensive
understanding of the submissions and their outcomes. These
metrics will be used to analyze the student submissions and
draw conclusions about the effectiveness of the contest in im-
proving the students’ programming skills. In the following
sections, we will discuss in detail the methodology used to
calculate these metrics and the results obtained from the anal-
ysis of the student submission data.



4.1 Success Rate Per Contest

This metric evaluates the percentage of students who received
correct answers for their submissions. It is calculated using
the following equation:

Success rate =
# of correct submissions

Total # of submissions

The results of our analysis are presented in Figure.1. As de-
picted in the figure, the average success rate for Contest 1 and
Contest 2 was below 10%. This can be attributed to the stu-
dents’ unfamiliarity with the OJ system and its rules. In the
early stages, students may have required multiple attempts
to become familiar with the system and contest regulations,
including the time penalty system which follows the classic
ICPC rules. To address this issue, clear contest rules were
established prior to the third contest, including a clarifica-
tion that each rejected submission would result in a 20-minute
penalty. As a result, the success rate increased to over 20% in
the third contest. It is important to note that the success rate is
also affected by the difficulty level of each contest. Although
efforts were made to maintain a consistent level of difficulty,
the difficulty level of each question will be further analyzed
in a subsequent section.

4.2 Error Analysis

This metric assesses the types of errors that students made in
their submissions, including “Wrong Answer,” “Compilation
Error,” and “Runtime Error.” The error analysis is calculated
using the following equation:

Error analysis =
#of submissions with a specific error

Total # of submissions

As demonstrated in Figure 2, the most frequently observed
error in the student submissions was “Compile Error,” ac-
counting for 46.15% of all submissions in our data. This error
is attributed to either syntax errors in the code or logical er-
rors. Given that the contest targets less-experienced students,
it is not surprising that a higher proportion of submissions are
affected by compile errors. The second most common error
was “Wrong Answer,” which constituted 29.98% of all sub-
missions. This error occurs when the student’s code is compi-
lable but does not produce the correct results. In some cases,
the code may pass certain test cases but fails to provide the
correct output for edge cases. The third most common error
was “Runtime Error,” accounting for 9.27% of submissions.
This error indicates that the student’s code takes an excessive
amount of time to execute or utilizes more resources than al-
lowed. In entry-level contest questions, this error is often the
result of infinite loops or logical errors in the code. Note that
from Figure 2 we can also learn that the average success rate
is 14.60%.

Figure 2: Percentages of Different Error Types.

4.3 Success Rate Per Problem

The success rate for a problem can be calculated as follows:

Success rateproblem =
(# of correct submissionsproblem)

(Total # of submissionsproblem)

The success rate for each problem was utilized to determine
the difficulty level of each problem. Table 1 lists the program-
ming problems that we used for each contest.

Contest # Problem Names

1 Phone Number
Team Number

2
Word Composition
Excel Column Number
Maximize Sum of Array

3
Fudging Finances
Passcode
Roman Numeral

Table 1: List of Programming Problems.

As shown in Figure 3, the problem with the highest suc-
cess rate was “Excel Column Number,” with a rate exceeding
65%. This problem asked students to translate a column ti-
tle as it appears in an Excel sheet to its corresponding column
number. The problem with the lowest success rate was “Word
Composition,” with a rate less than 5%. Both of these prob-
lems were from Contest 2 and “Word Composition” was the
first question of the contest. This may have contributed to the
low success rate, as students may have attempted to solve the
more challenging first question and not had sufficient time for
the easier questions. To address this issue, future program-
ming contests will have the easiest question set as the first
question, allowing students to build confidence and prepare
for more challenging questions.



Figure 3: Success Rate of Each Contest Problem.

5 Follow-up Surveys

We conducted two surveys, one for contestants, and another
for student judges after the third contest. Four students among
seventeen contestants and two student judges out of three par-
ticipated in the surveys.

5.1 Contestants Survey and Results

Below lists five survey questions we asked to the contestants
and the results.

Q1. Please let us know your WCPC experience (Satisfied,
Average, Not Satisfied)

1. Overall experience (75% satisfied, 25% average)
2. Coding environment (100% satisfied)
3. Food (100% satisfied)

Q2. How do you evaluate the difficulty of problems (Easy,
Medium, Hard)

1. Problem 1 Fudging Finances (50% Easy, 50% Medium)
2. Problem 2 Passcode (75% Easy, 25% Medium)
3. Problem 3 Roman Number (25% Easy, 50% Medium,

25% Hard)

Q3. How frequently do you want to participate in WCPC?
(Once a year, Once per semester, Twice per semester)

25% once a year, 75% twice per semester

Q4. What is the best part of WCPC?

It was a great way to test my java skills and figure out
what I need to work on.

WCPC makes me brush up on my Java. I haven’t
used Java for many of my classes, and this gives me a
good reason to review. There’s nothing to lose – free
pizza, potential to win gift cards, and I get better at
programming.

Q5. Do you have any suggestions/comments for WCPC?

Please have as many as possible! I wouldn’t change
anything. Great work by the professors and students
that set it up.

5.2 Student Judges Survey and Results

We also performed a survey of student judges using another
set of five questions. Below lists the questions with results.

Q1. Please briefly describe your experience in being a student
judge.



I enjoyed being a judge. It was fun to draw on my
competitive programming experience to create ques-
tions and to help facilitate the contests. Also it wasn’t
too time-consuming or challenging.

Way more time has been required filling out forms
and driving places than doing the actual work.

Q2. In your opinion, what is the best part of WCPC?

Writing the problems/input! It’s fun work.

Probably its accessibility/beginner-friendliness. I
think the WCPC problems are at least approachable
for a majority of CS majors, and the growing reposi-
tory of problems on the OJ system is a great resource
for underclassmen looking for more practice and be-
ginners to competitive programming. I have referred
a couple people looking to get started with competi-
tive programming to the OJ system. I’d say for most
CS students, the problems and the event itself are
probably a more accessible alternative to leetcode or
other programming contests.

Q3. Do you have any suggestions on how we improve
WCPC?

1. In future contests I think there should be 5 minutes
at the beginning to formally go over the rules. After
the contest I found out that a number of people didn’t
know there was a time penalty for incorrect submis-
sions, or that they could use an IDE/editor other than
the built-in one.
2. It would be ideal if judges who haven’t been em-
ployed by the college before didn’t have to go through
the background check process and employment pa-
perwork (reclassify it as stipend, scholarship, etc.?)
in total this took a few hours, including
3. separate appointments with HR, fingerprinting, etc.
– honestly felt like complete overkill for this posi-
tion/payment.

Don’t make us do hours of paperwork and clearances
on top of doing the actual work, it means the pay sig-
nificantly lower compared to hours worked.

5.3 Discussion

The survey results advocate our idea of recruiting students
for programming competition using OJ system. First, all con-
testants who participated in the survey are satisfied with the
coding environment, which reinforces the benefit of using OJ

system. Second, contestants want more competition, two per
semester, and student judges enjoy the experience of creating
problems and test cases for beginner friendliness problems.
These findings further support our idea of recruiting students
as judges. Two competitions per semester is very difficult if
not impossible for faculty members to hold. Student judges
make it possible while having fun. Moreover, students find
out what they need to work on, which is the whole point of
this programming competition.

To implement student judges’ suggestions, we will go over
the rules with contestants in the competition in March 2023.
Further, the OJ system is open for students to try sample prob-
lems and problems from previous competitions.

We also see the dissatisfied part from student judges, mainly
on the hiring process. We worked with Human Resource and
Payroll to facilitate the process, however, most of the clear-
ance and forms are required by the university.

6 Conclusion

Programming is a necessary capability for everyone in the
next 10 years, just like reading and writing. Programming
skills help students across majors since computer-based so-
lutions such as data analysis and web services are essen-
tial to all areas. We designed a university-wide program-
ming contest for students less-experienced in programming.
By participating in the contests, students not only exercise
problem-solving skills, but also gain self-efficacy, which pro-
vides them the confidence and motivation in solving prob-
lems in interviews and external competitions, as well as at
work. Our online judging system provides an efficient, effec-
tive, and fair way of conducting programming contests com-
pared to traditional paper-based competitions. It offers stu-
dents a platform to hone their programming skills and gain
self-efficacy, while providing valuable data for analysis and
improvement. The implementation of a university-wide pro-
gramming contest and the accompanying online judging sys-
tem hold immense potential for the development of students’
programming abilities and the creation of innovative and im-
pactful projects.
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ANALYZING GAME DATA FROM THE BOARD GAME TSURO

Brandon Packard
CU-GAME, Pennsylvania Western University
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ABSTRACT
The board game Tsuro is about building paths on a grid and
trying to avoid being removed from that grid. It has fairly
simple mechanics that lead to surprisingly complex behav-
ior. In this work, we create an artificial intelligence to play
the game, and then run it for 1,000,000 rounds of an 8-player
game. We then analyze the data gathered during this process
to draw some interesting (and in some cases unexpected) con-
clusions about the game and the board on which it is played.

1 Introduction

Tsuro: The Game of the Path, often just called Tsuro, is a
board game released by Calliope Games, falling in the cate-
gory of “easy to learn, hard to master”. Some work has been
done on implementing this game in code [1], but as far as we
are aware the game has never been brought into academia, so
there is no real related work. To this end we created a game
named FailRoad that is aesthetically and programmatically
original, but follows the same gameplay mechanics as Tsuro,
which allows us to draw conclusions about Tsuro itself. We
then created an artificial intelligence (AI) to play the game,
and analyzed various aspects of the game using a data analyt-
ics approach. In this work, we will share our discoveries.

1.1 Tsuro

Tsuro is a board game referred to as “The game of paths”. A
video description of the game is available here [2] – with the
difference that our version allows players to move themselves
off the board at any time, which places larger emphasis on the
competency of the AI. We will also discuss the game rules
in-depth in this section. In this game for 2-8 players, each
tile has 4 sides, each of which has 2 entry/exit points where
the tile will connect to other tiles on the board, as shown in
Figure 1. Each tile contains 4 different paths connecting the
entry/exit points. When considering rotations as the same tile,
there are 35 unique tiles.

The game takes place on a 6x6 grid. Initially, the grid starts
with no tiles on it, so the only available positions are the
entry/exit points on the outside of the grid. Each player
picks one of these starting points for their token. Play then

Figure 1: A single tile from the game of Tsuro. Each tile features 4
paths that connect the 8 entry points, as labeled by matching letters.

starts with the oldest player, and then moves clockwise. Each
player gets 3 tiles in their hand. They must play a tile adja-
cent to their current position, but can play any of their 3 tiles
rotated in any of the 4 directions, so a total of 12 possible
moves. After each play, they draw a new tile if possible.

The astute reader may have noticed that if a player gets elimi-
nated with tiles in their hand, that’s less tiles that are available
to play on the grid. As such, any player who is eliminated has
all tiles from their hand shuffled back into the tile “deck”.
This does lead to a complication however. It is possible that
the next person supposed to place a tile does not have any
tiles in their hand, but that there may be tiles in the future af-
ter players get eliminated! To handle this, there is a special
tile called the Dragon Tile. When a player is supposed to be
next to play a tile but no tiles are available, they receive the
dragon tile. Play proceeds as normal, except that nobody is
allowed to draw tiles from the deck, even if tiles are added
back into it, until the player with the dragon tile gets to draw.
After that, drawing resumes as before, until such time (if any)
that the situation arises again.

Once the player has played a tile, they follow the path from
their current position on the tile to the ending position (for ex-
ample, if a player was at the left position labeled A in Figure
1, they would move to the right position labeled A). If there
is another tile adjacent to where they end up, they take the ap-
propriate path on that tile as well. This process repeats until
the player ends up in a position without a new path to take. If
this position is on the edge of the grid, the player is removed

mailto:bpackard@pennwest.edu
https://www.youtube.com/watch?v=cxpQDmkdEQY


Figure 2: Illustration of how player positions, or the nodes of our
graph, are labeled based on a 2x2 tile grid. Each position in the
array lists the 8 node values for that board square. Note that there
are overlaps between tiles, so the top left tile adds 8 new values, then
the top right adds 6, the bottom left adds 6, and the bottom right only
adds 4, for a total of 24 nodes.

from the game. If the position is anywhere else, the player
remains in the game. If any other players are adjacent to the
tile the player has played, they follow the same process. In
this way, a single move can affect not only yourself, but also
some of the other players as well.

Once only one player is left in the game, they are considered
the winner. However, as the players move around the board,
there are a couple of unique situations. It is possible that two
players will collide when taking their paths. If this happens,
both players are removed from the game (if they are the last
two players, this results in no winner). You may have noticed
that there are 36 spaces on a 6x6 grid, but only 35 tiles. If
all 35 tiles are played, any players who manage to survive are
considered the winners (in theory, this could lead to as many
as 8 players winning, but this would be incredibly unlikely).

1.2 Terms and Definitions

To help avoid confusion, several of the terms we use through-
out this paper are listed below along with the definitions we
are using for them.

• Tile: a single tile of the Tsuro game

• Tile Grid: The 6x6 game board onto which tiles are
placed

• Node: A place on the board in which a player can be,
since they are always on the edge of a tile. A visual of
this concept can be seen in Figure 2.

• Path: The path that a player moves along in the game,
consisting of nodes

• Round: A full play of the game from start to finish

• Ranking/Final Ranking: What position the player fin-
ished the round in (1st, 2nd, etc.)

• Passive Share - When a player is on the same tile grid
square as at least one other player, and will be moved by
one of the other players

a. b.

c. d.

e. f.

Figure 3: Depiction of player movement when a new tile is placed.
The small smiley represents the player, and the red line represents
their movement so far. Image a is before the player’s move, and the
images from b to d show the progression of the player when they
play the bottom left tile. Assuming the node values in e, the player’s
path through the graph would be f.

• Active Share - When a player is on the same tile grid
square as at least one other player, but will be the first of
the players sharing the tile to move, thereby controlling
where they and the other players will go.

Given the terms above, let’s see what happens in a typical
move of the game. Figure 3 illustrates what happens when a
tile is placed on a 2x2 portion of the tile grid, as well as the
numerical path that the player would take through the nodes.
This demonstrates where the complexity of the game comes
in, because one move can put you (and your opponents) in a
very different place than you were previously, especially in
the later part of the game.

The rest of this work is as follows. Since there is no real
related work to our own that we are aware of, we will next
be describing our experimental setup in Section 2. After that,
we will desribe some Summary Statistics about the game and
then some Summary Statistics about the winners in Sections
3 and 4. Next, we will do a more detailed analysis of several
areas of the game and gameboard in Section 5. Finally, we
end with conclusions and ideas for future work in Section 6.



2 Experimental Setup

The first step in collecting data from the game was to create
the game itself. To do this, we needed to maintain both a 2D
list (for the tiles) and a graph data structure (for the nodes
and paths between them). Further implementation details are
outside of the scope of this work, but we would be happy to
discuss them with any interested parties. Our creation, named
“FailRoad” can be seen in Figure 4. Although both the visuals
and code are unique and original, it follows the same game
mechanics as Tsuro and can therefore be used to analyze it.

The second step was to create an (AI) that can play the game
automatically. The AI didn’t need to be perfect, but it needed
to have sufficiently complex behavior so that we would be
able to derive information about the game from having the
AI play it. The details of the Train AI used are discussed in
Section 2.1.

Finally, we set up some code to gather data, and had the AI
play the game. In this case, we used 8 players, which is the
maximum allowed in the game. We chose 8 players in hopes
that more players interacting would lead to more interesting
conclusions. It is also imperative to note that we ran the game
for 1,000,000 rounds, with randomly assigned starting posi-
tions and tile-deck orderings, to gather as much data as we
could and minimize the chance any results were random.

2.1 Tsuro AI

In order to get meaningful results, we had to have an AI that
could play the game relatively well (for, example it’s hard
to draw conclusions about the game if every AI moves ran-
domly). As such, we created an AI with several prioritized
tiers of behavior. Note that we refer to the placement of a tile
in the player’s hand in any of the 4 rotations as a single move.
Intuitively, the AI does the following, in order of priority from
most to least:

• If any move results in the player winning the game, take
that move.

• Of all possible sets of 2 moves (one move this turn, one
move the next turn based on the current board and the
player’s current hand)....

– Avoid “sharing” the next tile played with any other
players

– Remove as many players from the game as possible
– Try to get as close to the center as possible

The detailed process is shown in Algorithm 1. Note that there
is still a bit of randomness in the AI, as it breaks ties between
equally promising moves randomly. It should also be noted
that although this algorithm comes with no guarantees about
optimality, but in practice it tends to perform very well based
on visual observations (it is certainly much better than we are
at playing the game). As such, we believe that this AI is good
enough to use to discuss various aspects of the game.

Algorithm 1: Algorithm which is followed in order
to choose a move by the Tsuro AI. The main priority
is to keep the player alive, but attempts are also made
to eliminate the other players when possible.

1 function makeAIMove()
2 If any move results in the player winning the game, return that move
3 Set currentSet to all possible sets of 2 moves (one move this turn, one

move the next turn based on the current board and the player’s current
hand).

4 if Any moves in currentSet avoid ending up on the same tile as another
player then

5 Set currentSet to a new set with just those moves
6 end
7 if Any moves in currentSet remove other players from the game then
8 Set currentSet to a new set with only the moves that remove other

players (maximizing the number of players removed)
9 end

10 Set currentSet to a new set with only the moves that get the player as
close to the center as possible

11 Return a random move from all of the moves still in currentSet (This
will be the first tile of the 2 tile set that is selected).

3 Summary Statistics

In this section, we are going to discuss some of the general
statistics for the game, based on the data we collected and
analyzed. First, let’s discuss the number of tiles played in
each game (across all players). The minimum number of tiles
played was 22, and the maximum was 35 (which is the maxi-
mum possible in the game). More interesting, however, is that
the average number of tiles played per game is 34.022. For
the average to be more than 34, many games must go to the
maximum of 35 tiles. This is especially true when you con-
sider that there are shorter games like 22 in the mix that would
reduce the average. As such, most rounds of the game are
very long. This is solid evidence that our AI is quite good at
playing the game, as in our experience human-played games
(at least at our skill level) rarely get to the max of 35 tiles.

Next, let’s look at the number of winners per game. Remem-
ber that in theory, the number of winners can go from 0 to
8. The minimum number of winners was 0, and the maxi-
mum number of winners was 5. As large numbers of winners
would be incredibly unlikely, especially when the AI will try
to remove each other from the game, these numbers are rea-
sonable (in fact, we are surprised there were 1078 games with
4 winners and exactly one game with 5 winners!). The aver-
age number of winners per game is a very interesting 0.947.
The average being less than 1 indicates that there were more
games with 0 winners than games with at least one winner.
Considering each round is an even match in terms of skill (be-
cause all 8 players are being controlled by an identical AI),
and that it’s not always possible to land on the only empty
spot by playing the last tile, this also makes sense.

Next, let’s look at the length of the players’ paths. Recall
that the path is how many nodes on which the player traveled
throughout the course of the round. There are 168 unique
nodes on a Tsuro board. Since 48 of those are on the outer
edge, and only 2 of those can be included in any player’s
path (the node where the player starts and the node where



Figure 4: An image of our FailRoad game, with the same mechanics as the game Tsuro but original art and code. Note that the orange train
is currently moving along the track in this image, and is not at its final resting position.

the player ends), the theoretical maximum path size would
be 122. That being said, with other complications such as it
being likely that no tile configuration can hit anywhere near
all the nodes, the true maximum is likely much lower. The
theoretical minimum for a path is just 2 nodes, if the player
is removed from the game by another player before moving
away from their starting position. Unsurprisingly, the mini-
mum path in our data was in fact 2. The maximum path in
our data was 50 nodes long, which is quite a trek around the
board. The average length of a path was 11.238. This seems
to indicate that most players take a relatively small path, but
in reality there are many paths that are only a couple of nodes
long, and then many paths that are longer.

Another interesting piece of data is how many players each
player was able to remove from the board. The minimum
possible would be 0, if the player isn’t directly responsible for
any opponents going off the board, and the maximum would
be 7 if they were directly responsible for all of their oppo-
nents going off the board. In our data, the minimum number
of removals was 0 for each player, and the maximum was 6
for all players except the last player (who only got 5 at most,
likely because they move last and have less opportunities to
remove their opponents). The average number of removals
per player was 0.595, which means that each player, on aver-
age, removes about 1 player per 2 rounds of the game.

Finally, it may be of interest to note that the number of players
who didn’t get to play a single tile was 0.076 on average. This

means that each player was removed from the game before
even getting to make a single move around 7.5% of the time.
As shown below, the later a player moves the more likely they
are to get removed from the game, with it never happening to
Player 1 since they move first.

[0.000, 0.020, 0.035, 0.056, 0.082, 0.113, 0.136, 0.160]

In the next section, we will be looking at similar statistics, but
only for the winner(s) of the game.

4 Winner Statistics

First, let’s take a look at the number of tiles that the win-
ner(s) played. Each winner played a minimum of 3 tiles per
round and a maximum of 14 tiles per round, with an average
of 5.670 tiles per round. Since the overall number of tiles
played each round is just over 34, that means that each win-
ning player plays about 1/6 of the total tiles for that round,
on average. This is because as players get removed from the
game, the other players will get to play more tiles, assuming
the game doesn’t end first.

Next, let’s examine the path length of the winners. Winner
paths varied from a minimum of 3 nodes to a maximum of
42 notes, for an average length of 9.030. This is very in-
teresting, as the average length of players overall was 11.238.
These data points together seem to indicate that winning play-



Figure 5: A bar graph showing the average ranking each player ends
up with, based on their move order. Closer to 1 means they were
closer to winning.

ers make moves that result in less movement. This makes
sense since their AI will make them, in general, try to stick to
the middle instead of moving to the edges. This means that,
when possible, they will place tiles that create shorter paths
in order to try to stay in the center of the board.

Finally, let’s examine how many removals each winner was
able to manage. Winners gained from 0 to 6 kills, with an
average of 0.735 removals per winner per round. This is about
23.5% higher than the overall average, showing that winners
remove more of their opponents than non-winners.

5 Game Board Analysis

Now that we’ve seen some summary statistics for both the
player population as a whole and the winners, we will per-
form an in-depth analysis of the game board, to show how
various aspects of the board and game affect the winner.

5.1 Turn Order Analysis

First, let us analyze which ranking each player ended up with,
based on their turn order. Figure 5 shows a bar chart of the
average rank for each player, with values closer to 1 mean-
ing they are closer to winning. Please note that although the
values are very close, they are statistically significantly differ-
ent (with a P-value of 10−12 or lower), due to this data being
averaged over 1,000,000 rounds.

Perhaps unsurprisingly, players who moved later attained a
worse ranking overall. This makes sense, since the later the
move the more opportunities there are for other players to re-
move them from the game or at least exert some control over
where they move. That being said, the difference is not a large
one, with the average ranking for each player falling between

Figure 6: Left: A bar graph showing the average ranking each player
ends up with, based on what type of tile in which they start. Right: A
color coded visual of where each type of tile is located on the board.

4 and about 4.5. For context, if we were to just repeatedly and
randomly assign each player a ranking between 1 and 8, we
would expect each player to average out to a ranking of about
4.5. In other words, some players do better than random, but
not much - indicating the order in which players move does
not make a huge difference on their final rankings!

You may also notice that the best-ranking player is the player
that moved second, not the player that moved first. This is
a very interesting result, as the first player, on average: fol-
lowed a longer path, had less active shares (see Section 5.3
for a description of active shares), survived more tiles, played
more tiles, and removed more players than the second player.
In fact, the only part of our data that could even possibly ex-
plain why the second player did better is that they did have
more passive shares. As discussed in Section 5.3, more pas-
sive shares leads (somewhat unintuitively) to a better ranking
on average and in general. As the difference between the first
player and the second player in terms of final rank is very
small, only 0.06 of a ranking on average, that difference is
very likely explained by the extra passive shares.

5.2 Starting Node Analysis

Next, let’s look at how players do on average versus their
starting tile. There are 20 possible starting tiles. By applying
rotational and mirror symmetry to the board, we can see that
there are really only 3 types of tiles at which to start - those in
the corner, those next to the corner, and those in the middle.
Figure 6 provides both the average ranking for each of these
3 types and a color-coded visual of the positions themselves
on the board.

As you can see, there is a small (but statistically significant)
difference between the next to corner starting tiles and the
middle starting tiles, meaning that there’s not a big difference
between starting in those two types of tiles. However, there is
a large gap between those two types and the corner. In fact,
starting in a corner puts a player, on average, almost a full
ranking behind those who do not start in corners. This shows
that corners are the worst place to start in, and given a human-
played game where we can pick our starting location, that we
should probably avoid starting in any corners. In our opinion,
there are two main reasons for this. First, corners are the only



Figure 7: A bar chart of average final ranking versus the number of
passive shares the player had during that game.

starting tiles where an opponent that moves before you could
potentially knock you out of the game before you even get
a chance to move (assuming the player wouldn’t also knock
themselves out in the first move, which our AIs never would).
Second, the middle is intuitively much “safer” than the edges,
at least at the start and middle of game, because there are
more safe moves and paths in the middle than there are on
the edges (at the end of the game, there are so many paths
directly off the board that the middle is also very dangerous).
These factors together likely explain why starting in a corner
is so dangerous, and leads to a worse ranking on average.

5.3 Sharing Tiles Analysis

In Tsuro, we refer to a “share” as a situation in which more
than 1 player is “on” the same grid location (but not node -
recall each grid location has 8 nodes attached to it). That is to
say, when any one of those players makes a move by placing
down a tile, all players “sharing” that grid location will move
according to the tile. Extending this, an active share is a share
where the player we are examining will get the next move out
of all players sharing, meaning they will have control to move
themselves and those they are sharing with. A passive share
is a share where the player we are examining will not get the
next move, meaning that one of the other players will have
the opportunity to move the one we are examining.

Intuitively, active shares are desirable, because you control
where you and your opponents end up next, and passive
shares are highly undesirable, because you are guaranteed
that someone else will move you, possibly off the board or
into a worse situation. However, when we crunch the num-
bers, the results are a bit surprising.

Figures 7 and 8 show the average final ranking for players
relative to the number of passive and active shares they had
during the game, respectively. First, let’s examine the passive
shares. The first thing you may notice about this chart is that
overall, as the number of passive shares goes up, the average
ranking actually improves. But if passive shares take away

Figure 8: A bar chart of average final ranking versus the number of
active shares the player had dring that game.

the player’s control, how is this possible? To understand this,
let’s think about how the game evolves. At the start, unless the
player is in a corner, they are very safe. As play progresses,
players tend to move towards the center (as discussed more in
Section 5.4). So in the early and middle game, we have essen-
tially two major possibilities for each player: they are either 1.
in the center with many other players, or 2. on the edge with
few or no other players. In this situation, scenario 1 is actually
much safer! Being in the middle gives more options of where
to move, and even when other players move you, it’s hard for
them to remove you from the game. Conversely, being on the
edge is dangerous because it limits your motion and makes it
much easier for other players to remove you from the game.
As such, players with more passive shares tended to be in the
middle where many players clump together, which is usually
safer (until the end of the game when everything is danger-
ous). Players with less passive shares tended to be on the
edges and corners more, where it is more dangerous.

There are a couple of other data points that are worth men-
tioning. First, 7 and 9 break the trend and have a worse rank
than those around them. A more in depth analysis would be
needed to know the exact reasons for this, but it’s likely due
to the fact that passive shares sometimes get “chained”. That
is, Player A is sharing with Player B. Player B makes a move
and moves Player A to the same tile as Player C, who now
also gets to move Player A. This would likely happen only in
the middle to end of the round. As such, it could just be that
7 and 9 tend to be where a chain of passive shares is more
likely to remove players from the game, where 8 and 10 are
more likely for the player to get control again without being
removed from the game. It’s also important to note that al-
though the lower number of shares are statistically significant
from each other, out of 1,000,000 games * 8 players only 2
instances of 10 passive shares occurred, so more data may be
needed to “smooth out” the higher end of the curve and draw
more meaningful conclusions about that part of the game.

The other data point worth mentioning is the 0 passive shares
data point. To get 0 passive shares, it means the player has
never ran into any other player. To never encounter another



Figure 9: A heatmap of how often a tile was played on a particular
grid location, expressed as a proportion of games that a tile was
placed there at some point during the game. Lighter colors are more
used locations, and darker colors are less used locations.

player, they must never go to the center, since that is where all
the players attempt to go. However, since they would also be
trying to get to the center, they must be trapped on the edge,
and must remove themselves from the game eventually. As
our AI never removed itself from the game unless it had no
choice, it is likely that other players ended up placing tiles
that impeded its progress without ever being on the same tile.

Next, let’s look at the final ranking compared to the number
of active shares (Figure 8). The first thing we should mention
is that 5 active shares was included for completeness but only
had 1 instance out of the 1,000,000 games * 8 players and
therefore shouldn’t be used to draw any conclusions. Four
active shares had 1,263 out of 8,000,000 possibilities, so we
are fairly confident saying this is an outlier as well, and would
need more data to draw any conclusions. Overall, it seems
like more active shares should lead to a better ranking, and
we can see this is true for 1,2, and 3 active shares.

That just leaves 0 active shares to consider. Zero active shares
means that the player will never get a potential chance to re-
move another player from the game. If you think back to
the AI that we use, players will sacrifice getting closer to the
center if they can remove another player from the game. It is
highly possible that since 0 active shares never get a chance
to remove another player, they focus more on getting to the
center of the board, where it is safer. On the other hand, those
with 1 active share sometimes sacrifice board position for an
early removal, thus performing slightly worse in the end.

5.4 Tile Location Analysis

Finally, let us examine what areas of the board were more
commonly used. Figure 9 shows a heatmap of where tiles
were played on the board over all 1,000,000 rounds. Lighter
squares were used more often, and darker squares were used
less often. It can be quickly seen that the locations in the
middle were used the most, the locations in the corners were
used the least, and the other locations on the edge were used
somewhere in-between. Each corner was used in about 82.5%

of games, and each edge was used for around 91 - 93% of
games. The tiles in the middle were used in virtually every
game, with the bottom right of the 2x2 square in the very
center being used in 999,999 / 1,000,000 games.

This makes sense, since our AI has a rule that tries to move it
to the center. However, we believe it’s more than just an AI
bias. In many board games (such as chess), controlling the
center of the board is very important. In Tsuro, the center of
the board is the safest place to be for most of the game, be-
cause there are the least possibilities to be sent off the board,
since that would require being sent along 2-3 tiles instead of
just 1 like the edges. As such, most competent AIs would
tend towards the center as well.

In addition to this, the 16 squares in the middle have 4 pos-
sible directions of movement (without immediately going off
the board) - up, right, down, left. The edges only have 3, and
the corners only have 2. When you consider that any adjacent
tiles in play could prevent you from moving in a direction, be-
ing on the edges or in the corners is very dangerous, so most
AI (and in our experience, most human players) would tend
to migrate towards the center in early game. As such, we be-
lieve this heatmap is representative of the game itself, and is a
good indicator of where action tends to happen on the board.

6 Conclusions

In conclusion, Tsuro is a game that is easy to play, but difficult
to play well. In this work, we first recreated the game, then
created an AI to play it. We ran 8 different players with this
AI for 1,000,000 rounds of the game to get data to analyze.

We found that most games with our AIs go almost to the max-
imum possible length. We also found that although there can
be multiple winners of a round, there was on average less
than 1 winner per round, and that winners play more tiles,
take shorter paths, and remove more of their opponents.

We then moved on to a more detailed and general analysis of
the game. First, we found that overall, players who move later
do slightly worse on average. Next, we found that corners
were the worst places to start, and that being closer to the
middle was better. After that we saw that increases in both
types of shares led to better final rankings. Finally, we saw
that corners were used the least often, followed by edges, and
that the middle of the board was used in almost every game.

Our hope is that this in-depth analysis of the game situations
and board provide a starting point for those looking to create
an AI or just improve their own skill. Ideas for future work
include analyzing different AIs or different numbers of play-
ers (8 was chosen because it seemed like it would give us the
most interesting data, but 2 or 3 could offer its own insights).
Finally, creating a machine learner, such as a reinforcement
learner, and running it against itself and our AI could help
lead to even more interesting results in the future, and is the
most promising avenue for future work.
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ABSTRACT
Rust is a fairly new programming language created by a
Mozilla employee, Graydon Hoare, in 2006. It was created
with the intention to be a safer and more efficient C/C++ al-
ternative. Rust is a very polarizing language with many de-
vout followers and likewise, many people who simply do not
like it. Within this independent study, there will be a general
summary of Rust’s history, a description of the benefits Rust
has over C/C++, and lastly a detailed project where a bash
shell is written in Rust. This deep dive will hopefully give a
reader a better understanding of the language itself and why
it could, and should, be implement it into their professional
workflows.

1 Introduction

1.1 Rust - What is it?

Rust is a general purpose programming language that has
begun to be implemented in place of C/C++. Rust empha-
sizes type safety, concurrency and performance. Compared
to C/C++, Rust enforces memory safety without the need
for a garbage collector or reference counting. Rust does
this through its borrow checker which tracks objects life-
time and variable scope for every reference during compi-
lation. Rust has become a very popular language in systems
programming because of this feature. Rust started as a per-
sonal project in 2006 from developer Graydon Hoare. [1] In
2010, Rust was officially announced by Mozilla. Rust dras-
tically evolved over the next few years, introducing: classes,
polymorphism, destructors, and traits to provide inheritance.
The first stable Rust release (1.0) was pushed in 2015.[2;
1] Due to layoffs, caused by the COVID-19 Pandemic, the
Rust Core Team announced plans for a Rust foundation to
offset the layoffs affects. In February, 2021 the Rust Founda-
tion was announced by its five backing companies: Amazon
Web Services, Huawei, Microsoft, Mozilla, and Google.

1.2 Adoption

The Rust language has been steadily growing with develop-
ers and companies since its initial release. This is evident

through its consistent winning of the Stack Overflow ”most
loved programming language” [3] contest from 2016 through
2022. Major software companies have also started developing
using rust, including Discord, Amazon, Meta, Microsoft, and
Alphabet. Mozilla, a founding party in Rust, uses Rust for
their parallel browser engine and ”Quantum” which is a col-
lection of projects used to improve Mozilla’s ”Gecko” engine.
There is a ”Rust for Linux” patch series, started in 2021, for
adding Rust support to the Linux kernel. Discord uses Rust
for video encoding and parts of it’s backend. Microsoft Azure
uses Rust for artificial intelligence and IoT devices. In April,
one of the founding companies, Google announced support
for Rust within the Android Open Source Project.[1]

Rust Foundation and Governance Teams: Rust is ran by two
separate entities: the Rust Foundation and Governance teams.
The Rust Foundation is a non profit organization who’s pur-
pose is supporting the Rust project legally. The foundation
manages trademark and infrastructure. It was founded Febru-
ary 2021 by AWS, Huawei, Microsoft, Mozilla, and Alpha-
bet. The other entity running rust is Governance teams. These
teams are responsible for the developement of Rust. The Core
Team manages overall direction of the project and other teams
leadership. Language team designs new language features,
and the Compiler team develops the compiler and optimizes
it.

1.3 Rust’s Features

Macros: Rust allows for the use of two types of macros:
Declarative, and Procedural. Declarative macros use pattern
matching to determine expansion. On the other hand, proce-
dural macros use functions compiled before any other compo-
nents to run and modify the compilers input.[4] These macros
are generally more powerful tools than declarative macros but
are also much more complex to maintain and create. Procedu-
ral macros have three sub sections: Function-like, Attribute,
and Derive. Each of which have their own functionalities and
declaration styles.

Memory Management and Safety: Rust does not use auto-
mated garbage collection. Memory is managed through ini-
tialization. Rust provides low overhead deterministic man-
agement resources.[5; 2] Values associate on the stack by de-
fault and dynamic allocations must be explicit. Rust prevents



dangling pointers and undefined behaviour by verifying valid-
ity at compile time. Rust also has immutable and mutable ref-
erences. Rust is also designed to be memory safe. It doesn’t
permit null pointers, dangling pointers (as previously men-
tioned), or data races. Data can be initialized only through a
fixed set of forms, which require input to be initialized. Un-
safe code can be passed through the restrictions using the un-
safe keyword, however this is clearly an intentional bypass of
the safeties Rust provides out of the box.[4]

Trait Objects: Rust traits use static dispatch which means the
types of all values are known at compile time. However, Rust
uses trait objects to provide the user the ability to use duck
typing.[4]

C/C++ Integration: Rust has the ability to call code written
in C and for C to call Rust’s code. This is through the Rust
Foreign Function Interface (FFI). Rust allows something sim-
ilarr with C++ using a library called CXX.[6] Rust’s structs
can be given a ’#[repr(C)]’ attribute to force the same layout
as C to help with this process.

Cargo: Cargo is a powerful build system and package man-
ager that comes with the Rust language. Cargo can compile,
download, distribute, and upload crates (packages) from the
official registry.[6; 5] By default, these crates come from a
web sourced repository. However, users can setup their own
repositories using git or local files.

Rustfmt: Rustfmt is a code formatter built into Rust that
changes indentation and whitespace in a developers code.
This is a feature that helps developers keep a uniform cod-
ing standard. [4]

Clippy: Clippy is a built-in linting tool which improves read-
ability and performance of code. Clippy is named after the
Microsoft Office feature and it has more than 400 rules. [4]

System Calls: Rust allows a user to call system calls such as:

read, write, open, close, exec, wait,
fork, kill, and exit

[7]

1.4 Performance

Rust’s creation was in an effort to make a language as effi-
cient and portable as C/C++ while being safer than those lan-
guages. [4] Due to the lack of garbage collection, Rust can
achieve this goal of being more efficient than other memory-
safe languages. Rust has two modes for developing: safe and
unsafe. Safe is the default mode in which Rust was intended
to be used. In the unsafe mode, the person developing the
code is responsible for keeping the code safe.[4] Rust’s fea-
tures are optimized at compile time and cost nothing to a
program’s runtime. Rust also uses LLVM, meaning all the
performance boosts associated with LLVM come with Rust
as well. Compared to other languages, Rust has no memory

overhead for abstractions. [8]

2 Rust Compared To The Competition

Rust’s vast lists of features sets the language apart from its
older counterparts. This section will discuss some of Rust’s
features in depth and how they compare to older program-
ming languages.

Testing: Testing code is usually a tedious task for most other
languages, however, Rust has a modern approach to tests. For
other languages, a user would have to create a test function
that calls the function being tested and compares expected
versus actual outputs. In Rust, typing ’#[test]’ above a func-
tion will mark a function for testing.[4] This will allow a user
to type ’cargo test’ and check if the function is working.[5]
Placing these tests outside of the source directory will make
them integration tests and have them run without needing ac-
cess to source code. [8]

Documentation:
Using:

’\\\’ instead of ’\\’

will include all functions into the codes documentation. This
feature tends to lead to better code documentation. The better
a code’s documentation, the more digest-able the code will
be to other developers. As more developers become familiar
with Rust code, there will be more developers that begin to
use it for their projects. Converting developers to using Rust
is important for the growth and longevity of the language. As
seen on stackoverflow, Rust is certainly one of the highest
converting languages in recent times![3]

Safety: Another reason Rust could be chosen over C or C++ is
its safety through its design. This default level of safety also
makes Rust more user friendly than these less modern lan-
guages. One major safety change over C and C++ is checking
pointers at compile time.[4; 8] During compilation, the Rust
compiler ensures that every value is only assigned to one par-
ent at a time. Each parent is then responsible for clearing the
resource. The compiler also ensures that pointers cannot out-
live parent. Therefore, if a parent, or variable, is dropped then
so is the pointer. The compiler will use the borrow-checker to
ensure no hanging pointers.[5] All types are also by default
immutable in Rust. All of these features help protect against
common safety mistakes developers make when coding in C
and C++.

Thread Safety: Another modern feature, touted as one of
Rusts primary features that sets it apart from older languages,
is the built in thread safety. Rust variables know if it is safe
to cross thread boundaries and they know if its safe for values
to be given to other threads or to be accessed by two threads
at the same time.[8] Thread safety eliminates the worry of
thread racing and overwriting references. This also applies to
references. Pointers can only have one mutable reference or



any number of immutable references to any value of a code.

Lack Of Null Pointers: Rust also has no null pointers. Any
reference is guaranteed to not be null and Rust uses this fact
to optimize. The compiler forces a user to handle errors and
null values.[2] How the user deals with these errors is up to
the user, but Rust wont let any of these errors slip through the
cracks. Rust also uses ’?’ notation to catch and call errors
if there is one, or it will simply set a value to the completed
try.[4; 2] For example:

This will run x through the modify function, whatever the
user codes that function to do, and if successful x will be set
to that value. If unsuccessful the error will be returned.

Rust and C/C++ Together: As mentioned in the previous
section, Rust can call C and C++ code without hurting ef-
ficiency. This helps programmers implement Rust code into
older repositories using C or C++.

Community: The Rust community is very modernized com-
pared to other programming language communities. Rust
is thoroughly and precisely documented. Rust forums have
many members helping each other solve issues with their
code. External packages that can be brought in through
the package manager are plentiful.[6] This vast number of
user created libraries and packages only add to Rusts ver-
satility! At the time of writing this paper, crates.io reports
23,806,288,169 downloads of user uploaded crates! [6] . On
Rust’s official site, you can further see how community driven
and accessible the language is. The official site links to 3
chat services: Discord, Teams, Zulip. The site also links
to two separate forums: one for users to discuss with ea-
chother, and one for the development teams to discuss with
Rust users. This large community support system is not found
within other languages. It is hard to find even official websites
for languages such as C or C++. It is even more difficult to
find officially endorsed avenues for developers to discuss the
language, its development, and help each other solve coding
problems.

3 Learning Rust vs. C

From a students perspective, Rust and C have very different
learning curves. The format of C code is much closer to Java
than Rust. Java is a language learned by many beginners for
its ease of use and accessibility. Therefore, C is much closer
to the language many beginner developers and students know.
This gives C the upper hand over Rust for beginners who will
be much more comfortable writing C code. Rust requires
much more time to learn initial coding standards due to al-
ways needing to define pointers and types, and many other
features that Rust requires a user to use in an effort to keep
code safe. This makes the initial learning curve much higher.
However, where Rust starts to take the edge over C is when

a developer is working on a much more complex problem
where errors are more prevalent. Rust’s safety features will
lessen debugging time for these types of projects.

3.1 Project: Shell in Rust

The final section of this study will show a project done in Rust
to create a user bash shell. The differences between Rust and
C will be pointed out within each step.

Project

Goals
1. Create a custom shell that can run in interactive mode or
batch mode. Interactive mode functions as a typical shell and
is basically an infinite loop looking for commands to run, or
the break statement ’exit’. Batch mode will intake a file with
multiple commands and run them all.
2. Find paths to executable commands. For example the ’ls’
will be looked for in /usr/bin.
3. Implement the commands ’exit’, ’path’, and ’cd’. ’exit’
ends the user’s shell. ’path’ can be used to add different
paths to the search path of the shell. ’cd’ is a command used
to change directories in the shell.
4. Handle errors. Using rusts ’Ok’ and ’Err’ features, attempt
to catch an error in the code that would otherwise break the
project.

Project

Goals 1 & 4



The variable ’args’ is collected from the ’args’ passed with
the Rust code when it is ran. If the ’args’ vector has more
than one item in it then it is trying to be ran in batch mode.
This section of the ’if else’ statement also covers goal 4 of
this project which catches and handles errors using Rusts er-
ror catching. Next, if the shell is being ran in batch mode, the
code will split the file by every new line character. Each line
is then run using the ’run com’. If the shell code is run with-
out any arguments then it is being ran in interactive mode.
The loop infinitely accepts anything entered into the shell.
The code parses the input and then sends it to the ’run com’
function. Within this code segment there is use of ’Vectors’.
Vectors are a major improvement over C arrays. Vectors are
dynamic meaning their memory allocation shrinks and grows
with need. In C, an array needs to be a fixed size or can
be resized using ’malloc’. C arrays are also dangerous be-
cause they can lead to many pointer errors and overflow er-
rors. Rust’s safety features prevent all of this.

Goal 3

The ’run com’ function accepts a string from the shell’s in-
put. If the user input is one of the three functions ’cd’, ’path’,
or ’exit’ then the shell will execute the custom functions cre-
ated for this project. The projects ’cd’ uses a system call to
set the current directory to whatever argument the user enters.
If this function was written in C, the code could be passed in-
valid arguments and break the C code. To counter-act this you
would need to write a way of catching the error and return-
ing exiting the code without breaking it. In Rust, the error
would be caught and wouldn’t break the code. The project’s
path pushes the user entered path to the path vector. If a user
enters ’exit’ the code calls ’exit(0)’, ending the looping inter-
active shell or the batch file. The final match of the match
statement is the catchall. This final match takes any user in-
put and searches if it’s name exists among the path files that
the user specifies to the shell.

Goal 2

The ’binaryname’ function is called when an unrecognized
command is entered into the shell. The function takes the
user input and checks if any functions of a matching name
exist in the path files specified for the shell. The code loops
through all the paths in the ’path’ vector. If a command with
a matching name exists in one of the paths, the command is
executed.
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ABSTRACT 
 Spatial information is not commonly used in neural 
networks.  This is because as location values increase in 
value, this triggers a stronger response from the neural 
network, when this may not be the desired outcome. This 
research looks at how the way spatial information is 
presented affects the accuracy of the neural network. Three 
different ways are used to represent the information: a grid 
of all possible positions, an abbreviated model of (x,y) 
positions, and an (x,y) coordinate. The overall accuracy of 
the model under each of these conditions will be tested and 
compared to one another. 
 
KEY WORDS 
Neural Network, Spatial Location 
 
1 Introduction 
 
Neural networks are used in many areas due to their ability 
to generate correct output from data they haven’t been 
trained on.  J Steven Perry says in an online tutorial that 
“Neural networks are particularly well-suited for a class of 
problems known as pattern recognition [3].” Neural 
networks excel at pattern recognition because they are very 
good at eliminating bias that humans can have, and do not 
get tired like people do; seeing the same pattern over and 
over does not ‘bore’ the network[1,3,7,8].  However, 
neural networks are not often used in regards to spatial 
information.  This paper will explore the idea of using 
neural networks with spatial information and testing how 
well it performs. 
 
2 Neural Networks 
 
Neural networks are networks of artificial neurons, see 
Figure 2.1, that can learn.  The learning process is: the 
network will evaluate the correctness of its output, either 
by a self-check or with help of a human being, and then, 
depending on how close or how far the output is from the 
correct answer, it will adjust itself by either a small or large 
amount. The process of how the learning occurs will be 
described more in depth further into the review 
[1,2,3,6,7,8,9]. 

 

 
Figure 2.1 - An Artificial Neuron [9] 

2.1 How Neural Nets Work 
 
Neural networks can be broken down into two structural 
parts, neurons and layers, then into two procedural parts, 
forward propagation and back propagation. Neurons within 
a neural network are connected to other neurons and have 
a weight associated with the connection. Each neuron holds 
information that is transmitted to the other neurons it is 
connected to, see figure 2.2.  The direction information 
flows depends on if forward or back propagation is 
occurring [3,6,17].  

 
Fig 2.2 Connected Neural Network [11] 

 



Each layer of the neural network can have 1 or more 
neurons associated with it. There are always at least 3 
layers within a neural network: one input layer, one output 
layer, and one or more hidden layers between the other two 
layers, see figure 2.2. The input layer will take in numerical 
values pertaining to the situation being evaluated which 
will act as the input neuron's value. From there, each 
neuron in the first hidden layer will sum the value of each 
input neuron times the weight of the connection. After all 
of the summation has finished, each neuron’s value may 
have an activator function applied to it, that generates the 
value for that neuron [2,3,6,9,10,11,12,17].  

 
Fig 2.3 Sigmoid function [6] 

 
Fig 2.4 tanh function [6] 

 
Fig 2.5  ReLU function [6] 

 
An activator function commonly is a function that outputs 
a value between zero and one, or a value between negative 
one and positive one.  Examples of these activator 
functions can be seen in figures 2.3 - 2.5 [3,6,9,11,12,17].  
Sometimes before the activator function is applied, a bias 
is added in to change the value by a set amount for that 
layer [3,11,12,17]. Often a bias is added to try and deal with 
an offset issue with the input values to improve the learning 
process of the neural network [5,9,11,12,17].  This cycle 
will continue until the network has run through all the 
layers within it [2,3,6,9,10,11,12,17].  
 
This entire process of the network going from the input 
layer to the output layer is called forward propagation 

[3,6,9,11,12,17].  When the output layer’s neurons have 
been evaluated, a decision will be made based on the result. 
This process happens every time a new input is given to the 
network and everything is computed again  [2,10,17].  

 
Fig 2.6 Backpropagation example [11] 

2.2 Learning Process 
 
The other procedural part of the neural network, called 
back propagation, is the process of the network improving 
itself to become more accurate in its responses, see Figure 
2.6. This process starts at the output layer and works its 
way backward through the layers as it self-evaluates.  This 
process begins by evaluating the output, which is done 
either by the network evaluating itself, or by an outside 
source, such as a human being, saying how close the 
network was to the correct answer. Once the network 
knows how far off it was from the goal, it will calculate the 
error to know numerically how far off it was from the 
target, see equation 1 [4,11,14,15].  
 

(1) 𝐸𝐸 =  𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 −  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  [11] 
 
The connected weights to that output neuron are then 
adjusted based on the activation function used, the learning 
rate, and the amount it contributed to the output value using 
equations 2 and 3. Equations 2 and 3 assume no use of a 
bias value.   
 

(2) 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 ∗ (1 − 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜) [11] 
(3) 𝑤𝑤1  = 𝑤𝑤1  + 𝜂𝜂 ∗ 𝑖𝑖𝑖𝑖1 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ∗ 𝐸𝐸 [11] 

 
For equation 2, output is the result produced by the output 
neuron.  Equation 2 assumes we used the sigmoid 
activation function, so we are using the derivative of that 
function to reverse the process that got us the output value.  
For equation 3 it is updating the weight, w1, for the 
connection to neuron 1 in the previous layer.  The value in1 
is the output value from neuron 1 in the previous layer. The 
value η is the learning rate value [11].  The learning rate 
dictates how much of an impact each learning iteration will 
have [4,11,14,15].  

(4) 𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  =  ∑ (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑛𝑛  −  𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛)1
𝑚𝑚  [11] 

The total error is used when updating the weights between 
the hidden layer and the input layer or between hidden 
layers.  Normally the error, E, is summed for each output 
neuron, see equation 4, to compute what the total error is 
for the network. Then, the weights are adjusted that 



connect these layers the same as with the weights between 
the final hidden layer and the output layer by substituting 
Etotal for E in equation 3 [4,11,14,15].  
 
With back propagation, it can be applied every cycle of 
forward propagation, or it can be applied after multiple 
forward propagations.  In either case, this process is 
effectively repeated until the desired rate of error has been 
reached within the network [4,11,14,15].  
 
2.2 Representing Spatial Information 
 
This project focuses on the use of neural networks with 
regards to position data. There are very limited resources 
and examples of this in use because this is not an area in 
which neural networks excel. In a paper by Davidson et 
al[1], neural networks are used for finding the location of 
instruments using radio waves to find the position of a 
particular instrument. One key contribution of their work 
was passing in map information into the neural network.  
They noted previous approaches of using map information 
did not involve a neural network.  They used a grid based 
approach where the map was provided as a binary image 
and there was an input neuron for each pixel of the image 
[1].  While accurate, this approach does not scale well.  
 
This issue of encoding location data runs into the problem 
of representing certain types of values to a neural network.  
If we simply encode the x location as a single value for the 
network this is called label encoding.  Unfortunately, this 
type of encoding has the neural network thinking the value 
of 15 for x it is three times stronger than a value of 5 for x.  
However, with the grid approach from Davidson et al, they 
are using a one-hot approach. In a one-hot approach you 
have each node represent a specific value.  For example, 
for the values 1-3, one node would be the value for 1, 
another 2, and a third 3.  While it means more nodes for the 
neural network it helps it better understand the meaning of 
the information.  [20, 21]  
 
We propose evaluating three approaches to representing 
spatial information in a two-dimensional grid.  For the first 
approach, called Grid, we will take the one-hot encoding 
approach of Davidson et al and provide a neuron for each 
possible location on the grid.  For example, a 10 x 10 grid 
would require 100 neurons.  The second approach will also 
be a one-hot encoding approach, called Abbreviated.  In 
Abbreviated each coordinate value is broken down by 
ones, tens, hundreds, etc…  Then for each type of value 
(e.g. ones, tens, …) we will provide 10 neurons 
representing the values 0 to 9. As such a 10 x 10 grid would 
require 20 neurons, 10 for X and 10 for Y. For the final 
approach, called Chord, we will just use label encoding 
with one neuron for the X value and one for the Y value. 
 
3 Primary Objective 
 
Compare how the input layer model of a neural network 
affects the accuracy to learn to pass a ball from a stationary 

location to a moving object. (2.5 person weeks over 1 
semester). 
 
The Null hypothesis is there will be no difference in 
accuracy between the approaches.  We hypothesize that the 
Grid layout will have the best accuracy.  Additionally, we 
hypothesize that the Chord approach will have the worst 
accuracy. 
 
4 The Scenario 
 
The neural network will learn how to pass a ball to a 
moving person called the receiver in a 100x100 sized grid. 
Provided as input to the neural network are the location of 
the receiver, speed of the receiver, and a unit vector 
representing the direction of the receiver.  The starting 
position of the receiver will be given to the network via one 
of the three ways that were spoken about previously, Grid, 
Abbreviated, or Chord method. There is one input neuron 
for the speed of the receiver that ranges from 0.25 to 1.0.  
There is also one input neuron for the X value of the unit 
directional vector that ranges from -1 to 1.  Lastly, there is 
an input neuron for the Y value of the unit directional 
vector that ranges from -1 to 1.  
 
Constants that are present in the system are the speed of the 
ball and the position of the sending player, called the 
sender. The ball is a constant speed, set to 2, so it is always 
faster than the receiver, ensuring there is always a solution 
for the ball reaching the receiver. The sender is always 
placed in the middle of the grid (49,49).  
 
The Grid method has a total of 10,003 input nodes: 10,000 
for the location, 2 for receiver direction, and 1 for receiver 
speed.  The Abbreviated method has a total of 43 input 
nodes: 40 for the location, 2 for receiver direction, and 1 
for receiver speed. Finally, the Chord method has 5 input 
nodes: 2 for location, 2 for receiver direction, and 1 for 
receiver speed. There are two output neurons that represent 
the unit vector direction to kick the ball. The ball is 
assumed kicked at time 0 and that the speed of the receiver 
is constant. The accuracy of the network is measured based 
on how far off the unit vector was from the correct value 
using equations 5 and 6. 
 

(5) 𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  =  ∑(|(𝑋𝑋𝑛𝑛  −  𝑋𝑋𝑎𝑎𝑎𝑎𝑎𝑎)| + |(𝑌𝑌𝑛𝑛 − 𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎)|)  
 

(6) 𝐴𝐴𝐴𝐴𝐴𝐴 =  𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡/𝑚𝑚  
 
In equation 5 Xn is the result for the X unit vector for test 
run n, same for Yn with respect to Y.  Xact and Yact are the 
correct values.  In equation 6 the total error is then divided 
by the total number of examples tested, represented as m, 
to give the overall accuracy. 
 
4.1 Examples 
 
Figures 4.1 and 4.2 show an example. Both figures show 
the same scenarios with different outputs from the network, 



figure 4.1 is the correct output and figure 4.2 is an incorrect 
output. Ten sets of 10,000 of these scenarios are randomly 
generated for training and testing purposes.  
 
 

 
Figure 4.1 Correct example 

 
In Figures 4.1 and 4.2 the red dot represents the receiver, 
the green dot represents the sender, and the blue dot the 
ball.  In Figure 4.1 the receiver is moving in the direction 
of 0,-1 from location 0,10 at a speed of 1.  The ball is 
moving from location 5,5 in the direction of -1,0 at a speed 
of 1.  The ball and sender meet at location 0,5. 
 

 
Figure 4.2 Incorrect example 

 
In Figure 4.2 the receiver is again moving in the direction 
of 0,-1 from location 0,10 at a speed of 1.  The ball however 
is moving at a speed of 1.41 from location 5,5 in the 
direction of -0.707,-0.707.  The ball ends up at location 0,0 
while the sender is at location 0,5 and they do not meet. 
 
5 Solution Description 
 
The Java programming language was utilized to implement 
a neural network with one hidden layer.  It did not utilize a 

bias and used the sigmoid as the activation function.  The 
learning rate for the neural network was set to 0.05.  
  
A dataset was generated by creating 100,000 random 
scenarios, broken up into 10 sets.  When a scenario was 
generated, it was validated to ensure it had a solution and 
fit the parameters expected by the neural network.  Both 
the scenario and solution were stored for training and 
testing. 
 
For each treatment a neural network was generated with 
random weights and then trained on 9 sets of the dataset 
and tested on the remaining set.  This was repeated 10 times 
for each treatment to ensure less chance of any treatment 
getting lucky on the randomly generated weights. 
 

Input Representation 

Grid Abbrev Chord 

X X X 

Table 5.1 Block Design 

6 Results 
 

Approach Avg Error 
Rise (Y) 

Std Dev 
Rise (Y) 

Grid 0.1109 0.01201 

Abbreviated 0.08237 0.01099 

Chord 0.1518 0.001117 

Table 6.1 Accuracy Results - Rise 
 
T-test results:  
Grid vs. Abbreviated: 17.44 
Grid vs Chord: 33.74 
Abb vs Chord: 62.54 

 
Approach Avg Error 

Run (X) 
Std Dev 
Run (X) 

Grid 0.1234 0.006026 

Abbreviated 0.09924 0.01096 

Chord 0.3576 0.001516 

Table 6.2 Accuracy Results - Run 
 
T-test results:  
Grid vs. Abbreviated: 19.22 
Grid vs Chord: 232.34 
Abb vs Chord: 375.02 
 



Based on the T-scores we can say with confidence that 
Abbreviated preformed the best, then Grid, and lastly 
Chord.  It is worth additional testing for why Chord had 
strong Rise accuracy, but poor Run accuracy.  
Additionally, while it is positive that Abbreviated 
performed better than Grid, it is surprising.  As such, it is 
worth additional testing on Grid verses Abbreviated to 
ensure no issues with training/evaluation.  
 
7 Conclusion 
 
Based on the results of the experiment it can be concluded 
that the hypothesis for the Chord approach was correct. 
However, the hypothesis for the Grid and Abbreviated 
approaches was not.  In addition to being more accurate 
than Grid, the Abbreviated method also relies on much 
fewer nodes.  As the dimensions of the area grow the 
number of nodes for Grid grows by n2 for 2D and n3 for 
3D. However, for Abbreviated the growth rate is only 2 * 
log10n * 10 for 2D and 3 * log10n * 10 for 3D. Additionally, 
as the number of objects being tracked increases with 
Abbreviated the location is easily attached to additional 
information (e.g. speed and direction) of the object.  For 
Grid you would potentially need a grid per object.   
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ABSTRACT
Virtual reality simulators can be an effective way to train and
evaluate future surgeons, but require realistic modeling of
physical objects such as bodily tissues, sutures, and instru-
ments. We have found accurately modeling a suture to be
especially difficult, and describe here several approaches that
we have attempted within the Unity game engine.

1 Introduction

Virtual reality simulators provide a cost-effective and safe
way for surgeons to practice and perfect their craft, and to
have their skills evaluated. We are attempting to build such
a simulator, initially for ophthalmologic microsurgery, in the
Unity 3D engine. So far we have succeeded in creating cus-
tom peripherals similar to real surgical instruments and sens-
ing their location and orientation in space. An off-the-shelf
3D video system allows the user to see virtual representa-
tions of these instruments in a virtual world, in which main-
tain the same position and orientation as the peripherals do
in the physical world. The goal of our simulator is that users
will be able to use these virtual forceps to grasp a simulated
suture to stitch together simulated simulated body tissues and
tie knots, with the knot-tying as a particular point of empha-
sis.

The most challenging aspect of this simulation has been mod-
eling a suture that behaves similarly enough to real sutures
that the virtual experience will be meaningfully similar to the
physical experience. For now, our suture is composed of a
series of nodes connected by joints. We have found ways to
configure these nodes and joints that produce a marginally ac-
ceptable model, but are continuing to attempt to improve it.
The paper discusses the various challenges in creating a re-
alistic model and the parameter values that we have found to
work best.

2 Background and Related Work

Microsurgical suturing, or microsuturing, is performed by
ophthalmologists in procedures such as scleral laceration re-
pair and keratoplasty. It is one of the most technically

demanding surgical skills, involving the precise placement
of microsutures in sub-millimeter sized anatomy using only
hand-held instruments. Consequently, microsuturing requires
years of training and practice to master. In some cases, new
technology has replaced the need for microsuturing. For ex-
ample, cataract surgery is now generally performed via a self-
sealing sutureless wound. However, procedures involving
trauma repair, for example, still depend upon microsuturing,
and it remains a critical part of the ophthalmologist’s toolkit.
Moreover, the reduction in the use of suturing during cataract
procedures has decreased resident experience with this vital
skill.

Therefore, the trend away from microsuturing creates a risk
for those patients who must have a procedure that requires
it. In routine clinical practice, ophthalmologists and ophthal-
mology residents now have fewer opportunities to perform
“live” microsuturing than they once did, and in the absence
of this frequent practice, skills can become rusty. In some
cases, a resident may not acquire enough microsuturing prac-
tice during his or her ophthalmology training to gain profi-
ciency, and therefore that resident may not be capable of op-
erating independently or safely.

Unfortunately, opportunities to practice microsuturing out-
side the operating theater are limited. An optimal training
method should (1) have high fidelity (i.e. realism or face
validity), so that the rehearsed skills translate to real-world
performance, and (2) be convenient to deliver, so that it can
be implemented with meaningful frequency. These two at-
tributes are often juxtaposed, and microsurgery training mod-
els rarely provide the type and frequency of practice needed
for trainees to gain, maintain, and document proficiency [1;
2].

Current methods of microsuturing instruction include prac-
tice on tissue substitutes such as surgical tubing or 3D
printed models; practice on cadaveric tissue and dead ani-
mal parts; and practice on live, anesthetized animals [3; 4;
5]. The inexpensive substitutes usually lack the fidelity nec-
essary to mimic real-world conditions, whereas the more ex-
pensive biological models are low throughput, require regu-
latory oversight and specialized facilities, and cannot be re-
peated with meaningful frequency. While there are some
validated measures of microsurgical skill [6], overall com-
petency is judged largely by subjective evaluation. None of



these training methods offers objective assessment of perfor-
mance, which is needed both for focused didactic feedback
and for standards-based competency benchmarking. Thus,
they require the presence of a trained observer to document
and to score the trainee’s performance.

At this time of extreme sensitivity to cost and quality in
healthcare, improved training methods are a simple yet of-
ten overlooked way to drive efficiency. For microsuturing in
particular, good technique is expected to contribute to better
outcomes and shorter operating times. Therefore, the chal-
lenge we seek to address is how high-fidelity microsuturing
instruction can be delivered frequently, expediently, and in-
expensively.

Virtual reality-based simulation has begun to transform the
delivery of surgical training. The advantages are plentiful:
simulation exercises can be made to be very realistic, yet
they are easily deployed in an office or computer lab; ev-
ery aspect of a simulation can be measured, analyzed, and
documented to evidence learning progress; multiple scenar-
ios can be constructed to provide practice on varying clin-
ical presentations; and scenarios can be re-run over and
over, at zero marginal cost per repetition, until proficiency
is achieved. Currently, sophisticated surgical simulators ex-
ist for numerous specialties and techniques [7; 8; 9; 10; 11;
12], with the most mature applications in laparoscopy and
robot-assisted surgery. Within ophthalmology, we know of
two mature simulators, the Eyesi Surgical Simulator [13;
14] and the HelpMeSee Eye Surgery Simulator [15; 16],
that have had a significant impact on preparing surgeons for
cataract and vitreoretinal surgery. However, no simulator has
been widely accepted for microsuturing.

Creating a simulator entirely from scratch allows the most
flexibility and control, but would make the project very large
and complex. We have chosen instead to use Unity, a modern
3D game engine that provides various tools and components
for modeling phenomena in virtual 3D worlds. Several other
research projects have also built surgical simulators of vary-
ing types on top of Unity [17; 18; 19; 20]. None of these
projects model knot-tying in sutures.

3 Unity Components

Unity allows the programmer to create Game Objects, which
represent things that exist in the virtual 3D world. By default,
Game Objects contain only a Transform component, which
describes the object’s position, rotation, and scale within the
world. Many other types of pre-built components can be
added to Game Objects and configured as desired. For exam-
ple, a Mesh component makes an object visible and controls
its appearance.

A Collider component describes the volume of space filled
by the Game Object, and be used to detect intersections with
the volumes of other Game Objects that also have Collid-
ers on them. A Rigid Body component connects a Game

Object to the physics engine, causing it to respond appro-
priately to forces such as gravity and collisions with other
objects that also have Rigid Bodies. Joint components con-
nect Rigid Bodies together, causing forces applied to one to
propagate to others, and constraining the types of rotations
and movements that are possible between the Rigid Bodies.
Unity currently offers Character, Configurable, Fixed, Hinge,
and Spring joints. The Character, Fixed, Hinge, and Spring
joints are all special cases of Configurable Joints since they
can all be modeled using the Configurable Joint with certain
parameters. Physics Material components further allow the
programmer to control how Game Objects interact with the
physics system by setting properties such as the Game Ob-
ject’s coefficients of static and dynamic friction.

Game Objects can be created, and components added or re-
moved from them and reconfigured both through a world ed-
itor interface and through scripts that run dynamically as the
simulation is in progress [21].

4 Modeling Requirements

Our simulation requires three types of objects: a tissue sub-
trate, two pairs of forceps, and a suture. Prospective surgeons
practicing inside the simulation will be expected to use the
forceps to grasp the suture, pull it through the tissue subtrate,
and tie a knot with the two ends of the suture.

The only interesting behavior that the tissue substrate must
have is allowing the end of the suture to pass through it and
pull the rest of the suture along with it. We have a simple sub-
strate model with holes that seems sufficient for our purposes,
at least for an initial simulator.

The forceps are made up of many parts, each with Meshes
and Colliders and Rigid Bodies that are intended to appear
and behave like real surgical instruments. They are the vir-
tual representations of custom peripherals we created that al-
low the positions and rotations of physical objects the user
is holding to be observed and updated in the virtual world in
real-time.

The most challenging object to model has been the suture,
and we have not yet found a solution that is entirely satisfac-
tory. A real suture used in microsurgery behaves similar to
fishing line, though it is much smaller. It should be flexible
enough to easily bend when force is applied to it, yet rigid
enough that it attempts to return to an entirely relaxed posi-
tion in the absence of any forces. When forceps tug on an
end of a suture, the force should be applied evenly across the
length of the suture, both deforming and moving it. When a
suture has been tied into a knot, the force of friction must be
sufficient to prevent the knot from unraveling.



5 Suture Models

We have chosen to model the suture as a long chain of dis-
crete Game Objects, each with Capsule-shaped Colliders and
appropriate Rigid Bodies and Physics Materials, with Config-
urable Joints connecting each node to the next. Configurable
Joints were chosen to give the developers the most freedom
when creating the joints, since they offer everything the other
joints have and more. When force is applied to any node,
that force is distributed through the joints to the other nodes.
These nodes connected by joints create a chain-like structure
shown in Figure 1.

Figure 1: From left to right, three consecutive suture nodes, then two
other nonconsecutive nodes.

Currently, this suture is being modeled using 128 individ-
ual nodes with 127 separate Configurable Joints connecting
them. A sequence of more numerous but smaller nodes might
allow better behavior, but increases the computational load
on the physics engine, which must respond immediately to
changes in the system. When these nodes are given the ideal
parameters, which we have yet to discover, it may be able to
perfectly model a real-world suture. We have begun to find
ourselves in a dilemma wondering if we have yet to discover
the ideal parameters for the Colliders / Rigid Bodies / Physics
Materials on each node and the Configurable Joints between
them. Or have we reached the limitation of our this type of
structure and need to find an entirely different model?

So far we have been operating from the assumption that we
have not yet found the ideal parameters. We have, however,
found that changes in these parameters do materially affect
the suture’s behavior and have been able to move in the di-
rection of desired behavior. Currently, inexperienced users
are occasionally able to use the virtual forceps to grasp the
simulated suture and tie a knot in it. Knowing this it is more
than likely that those with suturing experience will be able to
consistently tie knots, though this still needs to be tested on
the current model. In addition to this, while tying the knot
and manipulating the suture under normal circumstances, the
suture remains relatively stable whereas past models would
have joints break and/or the suture would explode. This oc-
curs when Unity’s physics engine cannot find a way to bring
two subsequent nodes back together and the entire suture

flies off the screen trying to find the equilibrium point. Fi-
nally, the current model interacts well with the forceps that
the user uses to manipulate the suture’s position and rotation.
Previous models, which were made more rigid by adjusting
the spring force on the joint, would periodically rebound or
bounce away from the forceps when the user attempted to
grasp a portion of the suture. While this still can happen
in the current model, the likelihood of it happening has de-
creased considerably and when it does happen, the rebound
is typically not as noticeable or as strong as in past models.

While all the points made above are definitely a step in the
right direction, the current model is still missing important
characteristics of a real-world suture. Most notably, the
model does not contain the rigidity and overall feel that a
suture in the real world exhibits. An actual suture has cer-
tain characteristics and rigidity that is often compared to that
of a human hair or fishing line. The current suture, with its
lack of rigidity, behaves more like cooked spaghetti. Even
though it is too floppy, this actually allows for an easier knot
tying experience when compared to previous models. How-
ever, when a knot is tied, the suture does not stay in place
and it starts to untangle itself. While this can be fixed by
increasing the friction on the nodes’ Physics Material, this
makes it harder to tie a knot and makes it more likely to ex-
plode. In addition to this, there are a few bugs with the current
model that break the immersion of a real suturing environ-
ment. As noted above, the model can explode while a real
suture would simply break into two pieces when too much
force is applied. Also, when the user grasps a node in be-
tween a joint, the Unity physics engine cannot find the equi-
librium point for those joined nodes, since the forceps are in
the way. This causes the suture to spasm until the user un-
grasps it and makes it difficult to grasp the other side of the
suture with the other forceps due to the spasm. In extreme cir-
cumstances, where the joints are under too much stress, this
bug will cause the suture to explode. The last known bug,
which is mentioned above, is the rebound bug, in which the
suture moves away from the forceps while attempting to grasp
the suture. While this bug has been minimized and its effects
are mostly negligible in the current model, finding a solution
to this bug and all others previously mentioned is necessary
for creating an immersive suturing experience.

6 Parameter Variations and Observed Effects

During the process of tweaking parameters of various entities
related to the suture, we began to document how changes to
different parameters affect the suture’s behavior and the posi-
tives and negatives that come with these changes. Oftentimes
when tweaking parameters, the model felt more like a real su-
ture, but it introduced new bugs or made existing bugs more
common and/or had a worse effect when they occurred. Un-
fortunately, the opposite was also found to be true.

Figure 2 shows just a few of the parameters of a Configurable
Joint, with the values that we found to work best. The most
common parameter we tweaked was the Angular Y Limit and



Figure 2: Configurable Joint parameters.

the Angular X Limit on the nodes’ Configurable Joint. This
value determined how far a joint was allowed to bend before
the spring force would begin acting on the Rigid Bodies. One
would think setting this parameter to 0 and the spring force to
a very high value would make the joint stiff and not bend, but
this was not the case. It did make the suture more rigid, but
only to a certain degree that was not nearly as rigid as that of
a real suture. With what we know, this was caused by some
external force still being acted on the joint that Unity deemed
stronger than the spring force. The external force is gravity
acting on each node and the forces that the forceps apply on
the suture while pulling on it. We ultimately set the angular
limits to 10 degrees since too high of a value allowed the su-
ture to be too flexible and anything less made the suture hard
to bend, which introduced more stress on the joints. More
stress created a higher likelihood of the suture exploding.

After we found an agreed upon value for the angular limits,
we further experimented with the linear limit spring on the
Configurable Joint. The associated value dictates the strength
of the forces that the joint applies to the connected node when
it leaves the angular limit. The spring value had to be set such
that the spring was not too strong, so that there would not be a
lot of stress on the joint when bending it and tying it in a knot,
while at the same time the joint had to be rigid. With numer-
ous testing, the value of 1 was found to be the best balance of
the two. The damper value has been tricky to calibrate. This
value softens the force of the spring to eliminate jittering. A
high value completely removes the jittering effect, but makes
the spring force far too weak. A low value does nothing to fix
the jittering effect of the suture. Through testing we arrived
at a value of 5, but this value may need to be further tested.

Figure 2 shows a variety of other parameters that can also be
tweaked to perfect the joint. These values have been briefly
experimented with and thus far have proved to have little to
no effect compared to the parameters listed above or changed
the joint in a way that was not desired. For this reason, these
values will not be examined in detail. Furthermore, the Col-
liders, Rigid Bodies, and Physics Materials have parameters
that can be adjusted as well. In future models, these parame-
ters will be further tested.

7 Future Work

There are many other components to the simulator that need
to be completed or improved before it will be ready for use
by students. Focusing on the model of the suture for now, we
have many parameters left to consider. We have also thought
that it may be necessary for these parameters to change dy-
namically based on properties such as the number of other
nodes in proximity or whether or not this particular node
has been grasped. If we cannot achieve a sufficiently realis-
tic model through any tweaking of these parameters we may
abandon our nodes-and-joints model in favor of something
else entirely, such as a deformable mesh.



8 Conclusion

Unity has proven itself to be an effective, but overwhelm-
ingly flexible, system for modeling 3D phenomena. Mod-
eling a microsurgical suture is especially difficult because it
must balance flexibility and rigidity, distribute forces over its
entire surface, and respond realistically to minute forces. We
believe that a series of nodes connected through Configurable
Joints is the most promising technique for building such a
model, and have been able to fine-tune it by experimenting
with many of the parameters that are provided by that Unity
component.
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ABSTRACT

Many machine learning techniques have been developed 
to detect outliers within datasets. These techniques are 
used to detect whether activity on a credit card is 
fraudulent or legitimate. The primary purpose of this 
study is to compare three of these well-known outlier 
detection machine learning techniques on a dataset with 
fraudulent credit card activity within. Isolation Forest, 
One-class Support Vector Machines (SVM), and Local 
Outlier Factor (LOF) Algorithms were investigated, and 
the results were analyzed. To evaluate the performance of 
these three machine learning techniques, we used a 
dataset consisting of more than 280,000 credit card 
transactions. The results of this research study showed 
while Local Outlier Factor Algorithm and One-class 
Support Vector Machines Algorithm both had better 
results for precision and recall than Isolation Forest 
Algorithm, the only algorithm of the three that was 
specific enough was the Isolation Forest Algorithm. With 
a specificity rate of 80 percent, Isolation Forest Algorithm 
did what Local Outlier Factor Algorithm and One-class 
Support Vector Machines Algorithm could not do–which 
was to properly identify the true negatives. It is for the 
aforementioned reasons that the Isolation Forest produced 
the most reliable results with acceptable rates of 
precision, recall, specificity, and sensitivity.


KEY WORDS

Outlier Detection, Credit Card Fraud, Isolation Forest, 
Support Vector Machines, Local Outlier Factor. 

1. Introduction


The usage of credit cards in United States is higher than it 
has ever been, with more than 1 billion credit cards in use 
[1]. In 2018, there were 130,928 credit card fraud reports 
recorded in the United States [1]. Not only were there so 
many credit card fraud reports, but there was also a total 
of $24.26 billion lost to payments on credit card fraud 
worldwide with a prediction of global losses to grow by 
another $10 billion over the next three years [1]. Credit 
card companies and banks use outlier detection 
techniques in order to find outliers, or data objects that 
have deviated significantly from the other objects [2]. 
However, according to an Experian report, only 54 
percent of businesses stated that they were “somewhat 
confident” in their ability to detect fraudulent activity on 

time [1]. Additionally, only 40 percent stated that they felt 
“very confident” about preventing these incidents [1]. The 
United States makes up 38.6 percent of the world’s 
reported payment card fraud losses even though the US 
only generates 29 percent of total global purchases [1]. 


This research study serves to offer greater understanding 
about existing methods for outlier detection. This study is 
important especially in the United States where the 
proportion of the United States’ portion of the world’s 
reported payment card fraud losses is too high compared 
to the total global purchases.


Previous studies have investigated one of these machine 
learning techniques at a time but have not compared to 
see which technique works the best for credit card fraud 
detection.


In this study we investigate the performance of three 
machine learning techniques: Isolation Forest Algorithm, 
One-class Support Vector Machines (SVM) Algorithm, 
and Local Outlier Factor (LOF) Algorithm to perform 
credit card fraud detection using a dataset with a total of 
284,807 credit card transactions.


Isolation Forest Algorithm is a very effective tree-based 
algorithm that detects both outlier and novelty detection 
in high-dimensional data. This algorithm works to isolate 
observations by randomly selecting a feature and then 
randomly selecting a split value between the maximum 
and minimum values of the selected feature. In the 
Isolation Forest Algorithm, the contamination 
hyperparameter is the most important value but is also an 
unknown value [3]. This hyperparameter represents the 
proportion of outliers in the dataset and the values range 
from 0 to 0.5, with the default value being 0.1. If there is 
reason to believe there will be many outliers in the data, 
the contamination can be set to a larger value. However, 
this unknown value is a major limitation [4].


One-class SVM Algorithm is an unsupervised machine 
learning algorithm that can be used for novelty detection. 
This algorithm is very sensitive to outliers which makes it 
the best option to use for novelty detection when the data 
is not very polluted with outliers. One-class SVM can also 
be applied to high-dimensional data sets and does not 
have any underlying assumption in the distribution of the 
data [3].




Local Outlier Factor Algorithm is also an unsupervised 
machine learning algorithm and was originally created for 
outlier detection, however, can also be used for novelty 
detection. This algorithm also works well with high-
dimensional datasets. With LOF, the local density 
deviation of a given data point is computed with respect 
to the neighboring data points. The samples with a 
substantially lower density are considered outliers [3].


The remainder of this paper is structured as follows: 
Section 2 discusses the related works. Section 3 presents 
our methodology. Section 4 discusses the results of the 
study. Section 5 concludes our study. Lastly, Section 6 
provides our recommendations.


2. Related Work


Anomaly Detection in Credit Card Transactions Using 
Machine Learning [5]


Meenu et al. worked on this project in 2020. In their 
study, the researchers aimed to develop an automated 
classifier that can detect fraudulent credit card 
transactions with high efficiency [5]. The performance 
was evaluated by using precision and recall. 


The researchers used the Isolation Forest algorithm and 
H2O.ai, which supports the most widely used supervised 
and unsupervised machine learning algorithms.


The test data used for this study was found on Kaggle. 
This dataset includes approximately 500 fraudulent 
transactions, and 284,300 reported legitimate transactions, 
which makes it a highly imbalanced dataset [5]. 


The researchers concluded that the technique they used 
was successful in its ability to distinguish anomalies and 
inliers by creating several decision trees for every data 
point and was effective with a fraud detection model 
observed to be 98.7 percent [5].


Outlier Detection Credit Card Transactions Using Local 
Outlier Factor Algorithm (LOF) [6]


Sugidamayatno and Lelono worked on this study in 2019 
and looked at utilizing the Local Outlier Factor Algorithm 
to detect outliers in a dataset [6]. This study used a much 
smaller dataset consisting of only 10 transactions.


The researchers found that the LOF Algorithm resulted in 
the highest level of accuracy, recall, and precision and 96 
percent, 98 percent, and 9 percent, respectively [6].


A Comparison of Outlier Detection Algorithms for 
Machine Learning [7]


H. Escalante researched six methods for outlier detection 
in this research paper written in 2014. The study looked at 
the following methods: distance based, distance K-based, 
statistical, kernel-based, v-SVM, and one-class SVM [7]. 

The researcher used datasets from the UCI repository and 
added outliers and noise to properly test the algorithms.


The kernel-based novelty detection approach was found 
to be the best performer, as it showed perfect performance 
four times [7]. On the other hand, the v-SVM was found 
to be the worst method as it only detected a few of the 
true outliers.


Additionally, to note, the one-class SVM and the distance-
based methods detected almost 100 percent of the outliers 
but had an incredibly high rate of false positives [7].


Based upon the aforementioned reasons, this study 
concluded that the kernel-based novelty detection method 
is also effective and very simple [7].


A Survey on Outlier Detection Techniques for Credit Card 
Fraud Detection [8]


Pawar et al. worked on this research study in 2014 and 
they investigated Principal Component Analysis (PCA) to 
detect an outlier [8].


The dataset that was used is available on UCI Machine 
Learning Repository and is standard German Credit Card 
Fraud dataset [8]. The PCA technique was also tested with 
two-dimensional synthetic data where 100 data instances 
were generated, consisting of 80 normal instances and 20 
outliers [8].


The researchers concluded that the Principal Component 
Analysis is suitable for credit card fraud detection [8].  

3. Methodology


3.1 Dataset


The selected dataset for this work was downloaded from 
Kaggle.com and contains credit card transactions made by 
European cardholders in September 2013. The dataset has 
a total of 284,807 transactions that occurred in a span of 
two days. There are 492 frauds present in the dataset, 
which represent 0.172% of all the transactions recorded.


The data contains numerical values that have undergone 
dimensionality-reduction by principal component 
analysis. As a real dataset, the reduction step was crucial 
to make it more manageable and maintain the 
confidentiality of the raw data values. Credit card fraud 
detection relies heavily on outlier detection methods, thus 
the choice of this dataset.


The data consists of 31 attributes. The attribute V1, which 
is the first one, contains the time of the transaction and 
V31 contains two numerals, 0 and 1, identifying regular 
transactions and fraud respectively. The three algorithms 
will be tested with this dataset using the Weka Tool, 
version 3.8.6.




3.2 Preprocessing & Analysis Preparation


The preprocessing involved reducing the size of the data 
set. As we know, scaling is a major problem in data 
cleaning, and it was challenging to analyze almost 
300,000 instances in Weka Tool.


After running a few tests with the program crashing 
multiple times and displaying ‘low memory’ as the cause 
it became apparent that the data size would need to be 
reduced in order to be able to test the algorithms. 


The first part of the preprocessing was done using 
Microsoft Excel, since the data was converted into a 
comma-separated value (.csv) file. The data was filtered 
using the 30th attribute ‘Amount’ to remove all 
transactions that were less than 100 dollars. Completing 
this task reduced the number of instances to 57,385, 
which represent about twenty percent (20%) of the 
original data set.


All the data was numerical, which is not a suitable format 
for the algorithms we selected. In order to solve this issue, 
the ‘class’ attribute was changed from numerical to 
nominal by using the unsupervised attribute ‘Numerical 
To Nominal’ Filter in Weka Tool.

Additionally, an extra column named ‘label’ was added to 
the dataset, as part of a requirement for One-class SVM 
algorithm.


It is important to note that the data is highly imbalanced, 
with the preprocessed data set containing only 130 
instances classified as fraud.


3.3 Analysis Method


The following algorithms were used to analyze the data: 
Local Outlier Factor, Isolation Forest and One-class 
Support Vector Machine. 


The Local Outlier Factor is a classifier that applies an 
algorithm to compute an outlier score for each instance in 
the data.


The Isolation Forest is a tree-based classifier designed for 
anomaly detection. This algorithm works by analyzing 
how far a data point is from the rest of the data, rather 
than modeling the normal points.


The One-class Support Vector Machine is an unsupervised 
model for outlier detection. It works by learning the 
boundary for the normal data points, then it identifies the 
data outside of the border as anomalies.


The above algorithms were applied to the preprocessed 
dataset separately with a 10 folds Cross-Validation. The 
results were exported to Microsoft Excel for analysis and 
comparison using precision, recall, sensitivity and 
specificity rates.


Table 1. Weka Schemas and Filters


4. Results


The Support Vector Machine (SVM) had the best 
precision and recall, with a mean rate of 99.8% and 
99.8% respectively. The algorithm was able to correctly 
classify 99.8% of the instances. The Isolation Forest 
algorithm correctly classified 94.7% of the instances and 
had a mean precision of 99.7%, and a mean recall rate of 
94.7%. The Local Outlier Factor (LOF) algorithm 
correctly identified 99.7% of the instances and had a 
mean precision of 99.5% and a mean recall of 99.8%.





Figure 1. LOF, Isolation Forest and SVM precision 
and recall rate in percentage


Algorithm Type Weka Attribute

LOF Schema weka.classifiers.misc.LOF -min 10 -max 40 
-A 

"weka.core.neighboursearch.LinearNNSear
ch -A \"weka.core.EuclideanDistance -R 

first-last\"" -num-slots 1

Filter creditcard_shrunk-
weka.filters.unsupervised.attribute.Numeric

ToNominal-Rlast

One Class 
SVM

Schema weka.classifiers.functions.LibSVM -S 2 -K 
2 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 

-E 0.001 -P 0.1 -model / -seed 1

Filter creditcard_shrunk-
weka.filters.unsupervised.attribute.Numeric

ToNominal-Rlast

Isolation 
Forest

Schema weka.classifiers.misc.IsolationForest -I 100 
-N 256 -S 1

Filter creditcard_shrunk-
weka.filters.unsupervised.attribute.Numeric

ToNominal-Rlast



The SVM and LOF algorithms perform better instance 
identification than the Isolation Forest. However, all three 
algorithms have about the same precision. The Isolation 
Forest had the lowest rate of recall. 





Figure 2. Sensitivity and Specificity of LOF, Isolation 
Forest and SVM in percentage


The specificity and sensitivity of the algorithms varied 
greatly. The sensitivity was 99.98%, 94.7%, and 100% for 
LOF, Isolation Forest and SVM respectively. However, 
only the Isolation Forest algorithm was specific enough, 
with a rate of 80%. The confusion matrix of the LOF and 
SVM algorithms could not properly identify the true 
negatives, resulting in incorrectly classifying many 
instances.  


Figure 3. Isolation Forest Confusion Matrix


Figure 4. Support Vector Machine Confusion Matrix

 


Figure 5. Local Outlier Factor Confusion Matrix


The dataset used was huge and highly unbalanced and this 
may explain why we obtained these results. Out of the 
three algorithms, the Isolation Forest produced the most 
reliable results, that is an acceptable rate of precision, 
recall, specificity and sensitivity. 


5. Conclusion


This study demonstrates and compares the capabilities of 
three different machine learning techniques to find 
outliers in datasets. The results of this research study 
show that the Support Vector Machine Algorithm had the 
best precision and recall, with a mean rate of 99.8 percent 
for both precision and recall. Correct classification of the 
instances was 99.8 percent, as well. Local Outlier Factor 
Algorithm came in second best with correct identification 
of instances at 99.7 percent, mean precision at 995 
percent, and mean recall at 99.8 percent. The least 
effective method was the Isolation Forest Algorithm with 
94.7 percent correctly classified instances, 99.7 percent 
mean precision, and 94.7 percent mean recall.

 

The sensitivity of the Local Outlier Factor, Isolation 
Forest, and One-class Support Vector Machines were 
99.98 percent, 94.7 percent, and 100 percent, respectively. 
However, the only algorithm that was specific enough 
was the Isolation Forest algorithm. Isolation Forest had a 
rate of 80%, while the Local Outlier Factor and One-class 
Support Vector Machines were unable to properly identify 
the true negatives, which led to incorrect classification of 
many instances.


6. Recommendations


It is essential to consider the size of a dataset and the 
computational power of the machine that will be used to 
run the algorithm. Scalability and efficiency are known 
challenges of data mining and analysis. For example, one 
of the three algorithms selected for this study ran for over 
twenty-four hours before producing a result. Furthermore, 
the program used to run an algorithm may be a limiting 
factor, thus somehow influencing the results of an 
analysis. Therefore, further studies may compare the 
results of one algorithm applied to the same dataset using 
R, Python, and Weka Tool.                                                                                                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ABSTRACT 
Due to the rapid growth of e-commerce, finding a proper 
method to detect credit card fraud becomes more important 
than ever. Supervised learning methods can find patterns 
of credit card transactions but can miss novel patterns of 
fraud and consumer patterns that have yet to be trained 
upon. Unsupervised learning, in contrast, can be used to 
find anomalies instead of specific patterns but is limited 
due to variability caused by how different components are 
weighed. In this paper, we develop a way to combine 
unsupervised learning with weights discovered by prior 
supervised learning to improve credit card fraud detection. 
We use a decision tree to find the importance of different 
components of a credit card transaction in relation to fraud. 
This importance is then used to determine weights for 
distance used with the k-means clustering algorithm. To 
test our weighted k-means clustering algorithm, a dataset 
consisting of synthetic credit card transactions with over 
five hundred thousand transactions is used. Our algorithm 
improves clustering accuracy to 98.51%, compared to the 
normal k-means clustering accuracy of 87.92%. Moreover, 
the banking industry wants its models to be clearly 
interpreted. So, we discover a simple soft clustering 
algorithm based on our hybrid method. 
 
KEY WORDS 
Credit card, Fraud detection, K-means, C4.5 Decision tree, 
Clustering, Anomaly detection 
 
1.  Introduction 
 
Credit card use has exponentially increased in the modern 
age due to its ease of use in transactions in digital and 
physical retail spaces. However, this corresponding 
increase has subsequently led similarly large losses due to 
the potential for credit card fraud. Out of 320k registered 
reports on fraud, as noted by the Federal Trade 
Commission (FTC), 133k of these related to credit card 
fraud [1]. The immense amount of losses because of fraud 
has brought as demand for efficient ways of detecting 
credit card fraud.  
 
To aid in this search, machine learning algorithms provide 
a way to automate the process of data analysis to calculate 
a likelihood of a given transaction being credit card fraud. 
Two primary paradigms exist, typically falling between 
unsupervised and supervised learning. For credit card 

anomaly detection, unsupervised learning is used on 
unlabeled datasets, clustering information based on the 
patterns it finds. Supervised learning, in contrast, uses of 
labeled datasets to train algorithms that to classify data or 
predict outcomes accurately. Both supervised learning and 
unsupervised learning hold significant limitations—
unsupervised learning lacks the knowledge of patterns that 
may be known and trained on by a supervised learning 
method, while supervised learning depends on the 
existence of labeled data as well as the accuracy of the data 
it is trained on, which may not always be feasible for credit 
card fraud analysis [2]. Research on comparing different 
machine learning techniques for credit card fraud detection 
can be found in [3] and [4]. 
 
Previous research has investigated the possibility of 
utilizing different unsupervised and supervised machine 
learning algorithms. These have primarily used synthetic 
datasets, due to the difficulty of acquiring real-world credit 
card fraud data. Methods using fuzzy clustering and neutral 
networks on synthetic datasets have proven to obtain a 
93.90% true positives [5]. Other research has investigated 
semi-supervised methods, such as Dynamic Incremental 
Semi-Supervised Fuzzy C-Means (DISSFCM), to find 
results using both unlabeled and labeled data for precision 
levels around 70% [2]. In contrast, utilization of split 
algorithms, with a K-means unsupervised algorithm mixed 
with a supervised algorithm has led to promising results, 
with the use of random forests leading accuracies as high 
as 99.9% [6]. Prior research suggests an incentive to 
analyze a mixture of unsupervised and supervised learning 
for future research. More related research can be found in 
[7]. 
 
In this paper, we propose a hybrid method of determining 
credit card fraud using a C4.5 decision tree alongside K-
means clustering. We use a decision tree to find the 
importance of different components of a credit card 
transaction in relation to fraud. This importance is then 
used to determine weights to modify the Euclidean distance 
of a k-means clustering algorithm. To test our weighted k-
means clustering algorithm, a dataset consisting of 
synthetic credit card transactions with about one million 
and eight thousand transactions is used. Our algorithm 
improves the fraud detection accuracy to 95.35%, 
compared to the normal k-means clustering accuracy of 
90.50%. 



 
Furthermore, we develop a soft clustering algorithm based 
on the proposed method so the predictions can be easily 
adjusted using a threshold. This is more applicable to the 
banking industry since they need to adjust the predictions 
according to the current economic situation. Also, they 
want their models to be easily interpreted and meet the 
audit requirements. Our soft clustering algorithm is simple 
and easy to interpret, unlike many existing soft clustering 
algorithms. 
 
2.  Background 
 
In this section, we introduce the machine learning 
techniques used in this paper. Unless referenced 
otherwise, the descriptions and formulas referenced 
within this research are derived from [8]. 
 
2.1. Decision Tree 
 
Decision trees are a supervised classification methodology 
that uses a hierarchical leaf structure that split off to 
express all the possible choices for a set of data. Splits 
occur based upon split criterion, which have 
quantifications of split quantity that are dependent on the 
algorithm that is used. The C4.5 algorithm used in this 
research utilizes an entropy measure split. The entropy 
E(S) for a given set S is computed based on the class 
distribution 𝑝𝑝1 … 𝑝𝑝𝑘𝑘 as follows: 
 

𝐸𝐸(𝑆𝑆) = −�𝑝𝑝𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙2

𝑘𝑘

𝑗𝑗=1

(𝑝𝑝𝑗𝑗) 

(1) 

The C4.5 algorithm, when determining its split criteria, 
uses the difference in entropy to find the information gain, 
with the highest information gain being utilized to split at 
a given point. It acquires this by subtracting E(S) by the 
overall entropy for an r-way split of set S, as follows: 
 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆 → 𝑆𝑆1 …𝑆𝑆𝑟𝑟) = �
|𝑆𝑆𝑖𝑖|
|𝑆𝑆|

𝑟𝑟

𝑖𝑖=1

𝐸𝐸(𝑆𝑆𝑖𝑖) 

(2) 

The information gain found is then divided by a 
normalization factor for the sake of adjusting for a 
varying number of categorical values. The 
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑆𝑆 → 𝑆𝑆1 … 𝑆𝑆𝑟𝑟) for a given element of S, 
such as 𝑆𝑆1, can then later be used as a feature importance 
for a dataset. 
 
2.2. K-Means 
 
K-means is an unsupervised learning algorithm that 
requires the repeated determination of centroids of 
clusters, and the determination of similarity between the 

centroids and the original data points. The algorithm 
iteratively determines the centroids of clusters, and then 
assign data points to their closest centroid. At a higher 
level, these steps remain the same for categorical data. 
However, the specifics of both steps are affected by the 
categorical data representation as follows: 
 

1. Centroid of a data set: All representative-based 
algorithms require the determination of a central 
representative of a set of objects. In the case of 
numerical data, this is achieved very naturally by 
averaging. 
 

2. Calculating similarity to centroids: The most 
common way to determine the similarity is to 
compute the Euclidean distance between a data 
point and the centroids. 

 
The Euclidean distance formula determines the space 
between two points within a dataset, following the 
formula, with q and p representing two points in space, n 
representing the number of dimensions, and 𝑞𝑞𝑖𝑖 and 𝑝𝑝𝑖𝑖  
representing two vectors of a given space: 
 

𝑑𝑑(𝑝𝑝, 𝑞𝑞) =  ��(𝑞𝑞𝑖𝑖 − 𝑝𝑝𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

(3) 

A weighted distance follows a similar formula, but for 
each Euclidean vector (𝑞𝑞𝑖𝑖 − 𝑝𝑝𝑖𝑖)2 a predetermined weight 
𝑤𝑤𝑖𝑖  is applied as a product, with each set of vectors having 
its own weight. 
 
2.3. Soft Clustering 
 
Soft clustering, or fuzzy clustering, does not use binary 
values for determining whether a specific data point will 
belong to a given cluster. Instead, it assigns a probability 
chance that a datapoint fits within a given cluster, with a 
value closer to a given centroid being given a greater 
probability. An instance of a soft clustering algorithm is the 
Fuzzy C-means (FCM), used in previous credit card 
analysis to determine a suspicion score within given 
clusters [2]. Further soft clustering algorithms have been 
researched elsewhere [9], proving useful in machine 
learning research. 
 
3.  Proposed Hybrid Learning Model 
 
3.1. Dataset 
 
In this paper, a previously simulated fraud dataset 
generated by Brandon Harris’s Sparkov Data Generation 
tool [10] is utilized to deal with the inability to acquire 
real world transactions for use in data analysis. It covers 
the transactions of 1000 synthetic credit card users, 



performing transactions within a pool of 800 merchants, 
split across two datasets—a training dataset of 1,296,675 
transactions, and a testing dataset of 555,719 transactions. 
 
Each transaction contains information on the transaction’s 
date and time, the credit card number of the customer, the 
merchant’s name, category and location in longitude and 
latitude, the customer’s name split between first and last 
name, the customer’s gender, the customer’s location split 
between state, zip, latitude, and longitude, the customer’s 
city population, job, and date of birth, a transaction 
number, and a target class that informs whether or not a 
transaction is fraudulent. 
 
3.2. Preparation of the Dataset 
 
To parse and perform operations on the data, the credit 
card fraud dataset’s testing and training portions were 
input into the scikit-learn Python library [11] as separate 
data frames. To prepare data for clustering, we have to 
scale forms of non-continuous non-quantitative data so an 
appropriate distance measurement can be obtained. The 
qualitative data of the dataset includes the date and time 
of a transaction, identifiers of the merchant through name 
and category, and identifiers of the credit card holder 
through first/lane name, gender, street address, and job. 
These features provide characteristic data of the 
individuals involved within a given transaction. As this 
data cannot be scaled for clustering without holding a 
numeric value, the LabelEncoder from the scikit-learn 
Python library is used to force the information to be 
numeric, in a range from 0 to n-1, with n being the 
number of categories.. 
 
The data also contains various quantitative features, 
which can be divided based upon their properties of either 
being continuous or discrete. The index of the transaction, 
as well as identifiers such as the transaction and credit are 
number, city population, and ZIP code of the credit card 
holder are discrete values. In contrast, the amount of the 
transaction, split latitude and longitude data for the credit 
card holder and merchant, the city population of the credit 
card holder, and the UNIX time of the transaction are all 
considered continuous features. For the sake of this 
research, both discrete and continuous values are treated 
the same in terms of scaling. 
 
For better parsing, scikit-learn’s RobustScaler was 
utilized on each of the values, removing the median and 
scaling based on the quartile range for later 
transformation. This standardization of the dataset allows 
for easier interpretation of the dataset, as well as 
providing values that can be interpreted for distance. 
 
3.3. Experimental Process 
 
For the sake of testing the hybrid learning model, a 
decision tree was created based on the previously defined 
features based upon the training set, and its feature 

importance values 𝑆𝑆1 … 𝑆𝑆𝑟𝑟 as defined in (2) are interpreted 
to generate list of weights that could be used for a 
weighted K-means clustering algorithm. Each of the 
weights derived from the feature importance are 
interpreted through their range of 0 (not relevant) to 1 
(relevant), Features below a given weight of 0.001 are cut 
from the clustering analysis due to a lack of relevance. 
 
Each of these weights are then applied to a k-means 
clustering algorithm modified to utilize the weights in a 
weighted Euclidean distance algorithm, applied to the 
split test dataset. For example, given a feature that holds a 
value of 6 and a centroid that holds the value of 4, a 
standard Euclidean distance calculation of �(4 − 2)2 
would lead to the result of 2. However, the addition of a 
given weight 0.5 would modify the distance to be 
�0.5(4 − 2)2, or about 1.414. Values that hold less 
significance will hold a shorter distance from given 
clusters, lessening their impact on determining which 
cluster a given datapoint will belong to. 
 
Two clusters are generated for the sake of the 
experiment—one being defined as “non-fraud”, and 
another “fraud”. It is assumed that data will tend to lean 
towards being non-fraud, so the cluster that holds the 
most data will be interpreted as non-fraud, and the one 
with the lower portion of data will be interpreted as 
potential fraud data. Data that is accurately found in the 
“non-fraud” cluster is counted towards positive accuracy, 
which is reported in comparison towards a non-weighted 
K-means clustering using the same dataset. 
 
Following previous research that analyzed credit card 
fraud [2], we utilized the following metrics to determine 
the predictive ability of our hybrid classifier on the target 
class of credit card fraud: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

 

𝐹𝐹1 = 2 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

 
 

(4) 

TP, or true positive, refers to an instance of accurately 
predicted instances credit card fraud—in contrast, FP, or 
false positive, refers to an incorrect prediction of a fraud. 
TN and FN refer to true negative and false negative, and 
provide similar classifiers for the negative class, in this 
instance being a non-fraud transaction. 
 
A high precision score ensures that fraudulent detections 
are not being detected on nonfraudulent data, while a high 



recall score ensures a low risk of fraudulent transactions 
getting through as nonfraudulent. The F1 score gives the 
harmonic mean of both values. We prioritize for our 
hybrid classification model to have a low recall score, as 
it is assumed that false detections of fraud would have 
lower impact on a customer than fraudulent activity going 
undetected.  
 
3.4. Results 
 
Through using the decision tree’s feature importance 
statistics, a list of weights was found as follows, rounded 
to the third decimal place: [0.002, 0.346, 0.061, 0.068, 
0.058, 0.096, 0.172, 0.100, 0.097], corresponding to the 
credit card number, transaction amount, ZIP code, latitude 
and longitude of customer, the city population, the UNIX 
time, and the merchant latitude and longitude. Some 
features had less significance in terms of affecting how a 
decision tree would interpret results, but four out of the 
nine features hold a significance relevance of at least 
0.10. The decision tree itself held an accuracy of 95.78% 
when trained upon the training set. 
 
Initial non-weighted K-means clustering achieved an 
accuracy of 87.92%, and later weighted K-means 
clustering produced an improved accuracy of 98.51%. 
This change suggests significance in adding weights to 
the features of the dataset. Further analysis would be 
needed to interpret whether similar accuracy increases 
could be replicated in similar datasets, and if the arbitrary 
weights used hold any significance due to the large 
number of elements that were deemed unfitting to hold 
any significant weight. 
 
When analyzed, the model achieved a precision score of 
0.740, a recall score of 0.895, and a F1 score of 0.810. 
Compared to previous research, our hybrid model did not 
reach equivalent scores to the hybrid models previously 
published in [6], containing scores for these three 
statistics for K-means based models at around 99%. 
However, in comparison to the scores calculated for 
DISSFCM in [2], both abilities to prevent false alarms 
have been improved, with only the precision having 
instances of being lower than the highest values of around 
75%. Due to differing circumstances across studies with 
varying artificial datasets, there is challenge in providing 
direct comparison between studies. Despite this, the 
hybrid model was able to achieve positive results in 
accurately determining fraud. 
 
4.  Proposed Hybrid Soft Clustering Model 
 
4.1. Motivation 
 
Although previous results may suggest further 
investigation into hard clustering methods, “hard” 
clustering methods like K-means force results into solid 
conclusions. This may not be feasible for a financial 

institution, as acting on the results of the machine learning 
may over-emphasize false positives. Meanwhile, financial 
institutions need to adjust their predictions according to 
the current economic situation and they need their models 
to be interpretable [12]. Therefore, there is motivation to 
instead investigate potential soft clustering algorithms, as 
their percentage can be more easily interpreted and acted 
upon based on its result. 
 
However, there are challenges with soft clustering 
algorithms that make them difficult for real-world use in 
the banking industry. If ensemble methods are used for 
generating percentages of a transaction, they can become 
too complex to be easily interpreted for real-world 
applications [2]. This leaves room in modern data mining 
research to make an easily interpretable model that is 
accurate while simultaneously being readable enough for 
real-world applications. 
 
4.2. Model Proposal 
 
A potential soft clustering model for credit card fraud 
detection could be derived based on the proposed hybrid 
method presented in Section 3. For this model to work, a 
set of training data and a set of testing data are needed. 
Then the model can be built in the following steps. 
 

1. Use the set of training data to build the hybrid 
learning model presented in Section 3. After this 
step, the training data should be clustered into k 
clusters. 

 
2. For any datapoint in the set of testing data, 

compute the weighted distance 𝑑𝑑𝑖𝑖 between the 
datapoint and the centroid of the ith cluster for 
all 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘. 
 

3. The probability 𝑝𝑝𝑖𝑖  for the datapoint to belong to 
the ith cluster is computed as: 
 

𝑝𝑝𝑖𝑖 = 1 −  
𝑑𝑑𝑖𝑖

∑ 𝑑𝑑𝑖𝑖𝑘𝑘
𝑖𝑖=1

 

(5) 
 

For example, for a trained model with 2 clusters (k=2), if 
the distance between a new datapoint and the centroid of 
the 1st cluster is 0, the probability for this datapoint to 
belong to the 1st cluster 𝑝𝑝1 = 1 − 0 = 1. The probability 
for this datapoint to belong to the 2nd cluster 𝑝𝑝2 = 1 −
 𝑑𝑑2
𝑑𝑑2

= 0. If the distance between a new datapoint and the 
centroid of the 1st cluster is the same as the distance 
between the datapoint and the centroid of the 2nd cluster, 
the probability of for this datapoint to belong to either 
cluster is 1 − 𝑑𝑑1

2∗𝑑𝑑1
= 0.5. 

 



5.  Future Work 
 
As noted within Section 4, we intend to explore soft 
clustering methods to further see if applying weights has 
any significant impact in improving results or having any 
use in credit card fraud analysis. Ideally, the simplified 
model will improve upon previously established soft 
clustering efforts, but further research will be necessary in 
order to investigate whether or not improvements or 
meaning can be found from this model. Using the hybrid 
soft clustering model, it may be possible through future 
research to detect a consistent threshold from a given non-
fraud or fraud cluster that will provide accurate results 
across differing sets of credit card fraud data. 
 
Despite the increase in accuracy, the hybrid learning model 
also leaves room for further analysis. As the features 
currently in place have low impact when modified with 
weights, it can be interpreted that a model that excluded 
these values would be little different than one that weights 
them minimally. Further research would be needed to 
determine this. Additionally, the inclusion of new features, 
such as interpreting the distance between the credit card 
holder’s home and the location of their transaction, could 
possibly bring more useful features for more accurate data 
analysis. 
 
Other limitations of the data set, such as the lack of real-
world data, demand future compensation by further 
analysis upon other simulated credit card fraud datasets. 
These datasets may differ significantly in the information 
provided due to their source, which will require future 
standardization of features for future research to depend 
upon.  
 
6.  Conclusion 
 
To work around the consequences of both unsupervised 
and supervised learning, we proposed two hybrid learning 
algorithms to try and accurately predict credit card fraud. 
By using the feature importance of a decision tree to create 
weights to apply to the distances of a modified K-means 
algorithm, we were able to improve an initial accuracy of 
87.92% to one of 98.51%. This increase signifies some 
relevance in the use of weights, but further research is 
necessary to confirm whether this increase in accuracy 
holds any significant use for credit card anomaly detection. 
Furthermore, research is still necessary to determine the 
worth of the hybrid soft clustering model. The initial 
proposed algorithm does show promise in providing 
results, but future analysis will help to further elucidate its 
purpose and potential with aiding financial institutions in 
determining credit card fraud.  
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ABSTRACT

Machine learning (ML) chatbot applications are an increas-
ingly popular enterprise solution. Research and development
of ML chatbots can be restrictive due to high resource costs.
The development of sophisticated chatbots can be facilitated
through a cloud-based framework for deploying chatbot in-
frastructure. A Kubernetes framework for cloud computing
education [1] is adapted for chatbot deployments. The frame-
work emphasizes the utility of cloud computing concepts
such as containerization, orchestration, and CI/CD (Contin-
uous Integration/Continuous Delivery) for ML applications.
Further, cloud security best-practices are followed in order to
elevate deployments to industry-level operations. The Uni-
versity Chatbot is a prototype project demonstrating the ca-
pability of the framework. Through this chatbot, users are
able to make queries in natural language regarding campus
events. Chatbot deployments follow a full- stack workflow.
A front-end component implements a natural language chat
interface for user interaction. The back-end involves a ML
chatbot application that can process user input and query a
database populated with domain-specific information.

1 Introduction

Chatbots enable users to interact with services through natu-
ral language conversation. Such applications have become
a ubiquitous solution for automating customer support in
enterprise settings [2]. Typically, chatbots are limited to
organization-specific queries. Level of sophistication can
range from tree-based dialogue flow to the implementation of
Machine Learning (ML) models for Natural Language Pro-
cessing (NLP). Recent innovations have broadened the util-
ity of chatbots to that of sophisticated, general-purpose assis-
tants. One notable example is ChatGPT [3]. Within a few
months of its introduction, ChatGPT has garnered attention
for its potential to disrupt both academic and industry set-
tings [4]. As further advancements are made, the integration
of chatbots into day-to- day operations will become more crit-
ical to meet expectations. However, the development of so-
phisticated chatbots is prohibitive, given the complexity and
resource intensity. This work presents an effort to address
this issue through the design of a cloud-native framework for
deploying chatbot infrastructure.

The University Chatbot originated as a learning opportunity
into the field of cloud computing. Its motivation being to
highlight the utility of cloud-native development for complex,
full-stack applications, including ML chatbots. Development
relied on cloud computing concepts such as containeriza-
tion, container orchestration, and CI/CD (Continuous Integra-
tion/Continuous Delivery). Through this approach, we devel-
oped a scalable, secure, and accessible solution that can be
re-conceptualized as an adaptable framework for future chat-
bot development.

The framework is based on a standard chatbot’s workflow,
with five components: a UI (User Interface), a NLP (Nat-
ural Language Processing) server, an Actions API server,
a Database, and a web crawler for data extraction (Web-
scraper). A prototype for this framework was developed with
a wide array of open-source tools and deployed over an aca-
demic cloud. An initial version of the framework allowed
for each application component to be containerized through
Docker and orchestrated within a Kubernetes cluster. This
version had several drawbacks, including a lack of consid-
eration for cloud security and manual configuration of clus-
ter services. A second version was developed to address
these concerns, introducing automated deployments through
CI/CD pipeline integration and a suite of security features.

The remainder of this paper is organized as follows. Section
2 presents an overview of cloud computing concepts, chatbot
development practices, and previous work related to cloud-
native enablement of ML services. Section 3 describes the
development environment, the design of the framework, and
the development process of a prototype. Section 4 evaluates
utility of the framework. Section 5 concludes the paper and
discusses possibilities for future work.

2 Literature Survey

Over the past decade, the fields of cloud computing and ML
have seen increasing, industry-wide adoption. Given this
rise, a substantial amount of research has been carried out
into each field independently and how they can interact. We
present a literature survey in order to properly contextualize
our work. The scope of our survey includes chatbot develop-
ment practices, cloud computing concepts, and previous work
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specific to cloud-native enablement of ML services.

2.1 Chatbot Development

Chatbots present users with a conversational interface where
they can make domain-specific queries in natural language.
According to [2], a ML chatbot’s workflow is as follows.
Users interact with the chatbot through a conversational UI.
Their input is forwarded to the chatbot’s NLP unit, which pro-
cesses the input and crafts an appropriate response - as seen
in Figure 1. First, a NLU (Natural Language Understanding)
model parses out the message’s intent and extracts entities.
An intent maps to a set of predefined actions that a chatbot
can execute. Entities are data points extracted to allow for
actions to be more specific to user input. A dialogue manager
maps the intent to an action within the chatbot’s domain. Ac-
tions can be API calls or requests to external resources nec-
essary to craft an appropriate response. A dedicated actions
server can be deployed independently of the NLP unit to carry
out requests. An external resource can include a database for
storage of training data or records to be accessed by users.
A Natural Language Generator uses data returned by an ac-
tion to craft an appropriate response to the user in natural lan-
guage. NLU model training can be resource intensive, both in
computational power and storage capacity. Training datasets
must be large and expansive enough to generate an effective
model. Through the cloud, these costs can be alleviated.

2.2 Cloud-native Development

As global computing demand increases, so does the need for
reliable, scalable cloud solutions. Through containerization,
application workflows can be modularized into independent
components handling distinct workloads. Docker is a leading,
open-source container platform [5]. Within containers, appli-
cations are packaged into lightweight, portable units along
with their dependencies and execution environment. This is
valuable for applications with a large number of dependen-
cies, such as ML projects. In contrast to hypervisor-based de-
ployment methods, containers can be rapidly deployed across
different host environments with minimal overhead. The ef-
ficiency of Docker containers is due to the layered approach
for building container images. This approach saves compu-
tation effort and network bandwidth, as existing layers in an
environment do not need to be rebuilt or loaded from a reg-
istry. Container portability is critical for dynamic cloud en-
vironments, where applications may need to be migrated or
redeployed in varying infrastructure contexts.

As an application’s complexity and workload increases, the
management of many contianers becomes cumbersome. Ku-
bernetes is an open-source, container orchestration system in-
troduced in 2014 [6]. Since its introduction, Kubernetes has
become a ubiquitous cloud solution due to its ability to au-
tomate the deployment, scaling, and management of contain-
ers [7]. Through Kubernetes, containers are hosted as pods
within a cluster of compute nodes. This allows for features

Figure 1: Diagram of chatbot NLP unit, borrowed from [2]

such as automated scaling, networking, and load balancing of
resources. Pod replication allows for services to be scaled up
or down to meet varying workload needs.

Application development lifecycles can require a set of repet-
itive tasks for building and deploying updates. Manual ex-
ecution of these tasks can be a bottleneck in development
efficiency. Through CI/CD pipelines, the building, testing,
and deployment of applications can be automated. In a CI
step, changes committed to a version control repository trig-
ger the automated building and testing of code. This allows
for builds to be validated prior to deployment, reducing the
risk of errors causing service disruptions. Once validated, the
build is passed to a CD step to automatically deploy across
target environments. Automating these steps allows for more
efficient delivery of application updates to end users. Jenkins
is an open source automation server which can be configured
to implement CI/CD pipelines [8]. A Jenkins server can be
integrated within a Kubernetes cluster to automate container
deployment tasks. By leveraging these concepts and tools,
our framework enables the development of reliable applica-
tions.

Maintaining a secure cloud environment is an increasingly
critical aspect of cloud-native development. For instance,
chatbot operations may require users to provide or access sen-
sitive information. Implementing security measures is nec-
essary for maintaining reliable services. Securing chatbot
services requires user authentication and end-to-end encryp-
tion of traffic [9]. On the infrastructure level, there exists
an extensive set of best-practices to follow for Kubernetes
deployments [10]. Role-Based Access Control (RBAC) en-
sures internal systems are only accessible to authorized users
or services. In RBAC, the management of user privileges is
abstracted through roles. Roles map to a set of system privi-
leges. In industry settings, RBAC is further enhanced through
Identity management, where users are thoroughly authenti-



cated prior to role assignment [11]. Access to the cluster
can be further restricted through network-wide and container-
specific security policies. Distinct workloads can be isolated
into unique name spaces, or virtual sub-clusters, to safeguard
critical resources. SSL/TLS support enables end-to-end en-
cryption between pods for secure network traffic. The inte-
gration of CI/CD pipelines requires further security consid-
eration, given the privileged level of access that pipelines re-
quire. According to [12], pipeline deployments should be au-
thorized through RBAC policies. Sensitive configuration val-
ues can be secured behind a secrets manager. As part of the
build validation, pipelines can automate vulnerability check-
ing of applications by scanning dependencies. Implementing
these security practices serves to reduce the attack surface of
chatbot deployments through our framework.

2.3 Chatbots in the Cloud

Development of ML projects can be prohibitive due to their
resource intensity, both computationally and storage-wise.
Thus, cloud deployments are an attractive solution. Early
proponents of cloud-based ML services highlight the util-
ity of automated configurations and efficient resource scal-
ing with hypervisor-based solutions [13], [14]. Later work
introduced the implementation of containers to improve ML
deployments. In [15], a Kubernetes platform for ML edu-
cation is proposed as an improvement over hypervisor-based
methods. Benefits cited include more rapid deployments and
improved scalablility for large, multi-tenant operations. Fur-
ther work serves to illustrate the industry-wide adoption of
Docker- and Kubernetes-specific deployments for ML work-
loads [16], [17] - including work seeking to enhance the ar-
chitecture [18]. [19] presents a study of emerging common
practices for deploying ML projects through Docker. Con-
sidering the complexity of ML applications, CI/CD pipelines
serve to make development life cycles more manageable.
Even so, the unique needs of ML projects require an enhance-
ment of existing CI/CD strategies, as illustrated in [20], [21].

As stated previously, ChatGPT is a recent example of chatbot
technology which has received wide recognition for its ad-
vanced capabilities [4]. The exact infrastructure logistics for
the development of ChatGPT are not publicly documented.
In [22], OpenAI outlines that previous GPT models required
a Kubernetes deployment scaled up to 7,500 nodes. Their
workloads consist of dynamic ML projects which are up-
dated frequently. Operations rely on Kubernetes automated
scaling and networking utilities to allow rapid, steady oper-
ations [22]. Serving as a case study into the robustness of
a Kubernetes deployments for chatbots, this example high-
lights the relevance of our work. We explore chatbot devel-
opment at a smaller scale using industry-standard technolo-
gies and practices - including containerization, CI/CD, and
security aspects. Our work elucidates the logistics of an in-
creasingly important technology and provides a foundation
for future study.

Figure 2: Chatbot workflow diagram

3 Development

A template of our framework is outlined in Figure 2. Consid-
ering a chatbot’s typical workflow, our design features five
components: a front-end Web User Interface (Web UI), a
NLP server, an Actions server, a Database, and a Webscraper.
A typical process flow involves a user making a query in nat-
ural language through the Web UI. This query is forwarded to
the NLP server. Once the NLU unit has processed the intent
behind the user’s input, the NLP server makes a request to
the Actions server. The Actions server carries out the request
through API calls. In this example, it queries the Database
and returns a set of records to the NLP server. The server
can then craft and send a response back to the user through
the Web UI. The Webscraper executes independently to pop-
ulate the Database with data collected from domain-specific
websites.

In order to display the utility of the framework, a prototype
chatbot was developed [23]. The University Chatbot follows
the workflow outlined above, allowing users to make domain-
specific queries about university events. The implementation
is summarized as follows. The Web UI is a standard chat
interface built with JavaScript and Socket.IO. Site files are
hosted in an Nginx container to handle web traffic. The NLP
and Actions servers are both developed as part of the Rasa
platform for chatbot development [24]. A MySQL database
instance stores records accessible to the Actions server. The
Webscraper is a Python script which populates the Database.

Several chatbot development tools exist to meet the diverse
needs of enterprise settings. Major cloud vendors, such as
Azure and AWS, provide their own ML bot services. These
are typically expensive, managed services used to expedite
the development process [25]. Selecting the appropriate tool
to meet development needs involves several factors, including
potential website integration, deployment methods, and pric-
ing models [26]. Rasa is an open-source platform for chatbot
development [24]. Through Rasa, the generation of training
data is standardized for convenient NLU model creation. This
involves defining sample data within a predefined structure of
YAML files. An nlu.yaml file contains a list of intents with
detailed examples of possible user messages. Regular expres-
sions, lookup tables, and entity definitions can be used to cre-
ate rich examples for training. Further, dialogue management
is trained by defining sets of stories and rules. Stories outline



typical dialogue paths that a user may follow. Rules ensure
the NLU model maps an appropriate response to certain in-
tents. A domain.yaml file defines the scope of data to train
the model with. Training data is passed through a training
pipeline to output sophisticated NLU models A key benefit
of Rasa is the availability of NLU pipeline templates and pre-
existing training data sets. These features allow for a func-
tional model to be trained small amount of domain-specific
data. This preliminary model can be made accessible to users,
allowing for realistic data to be collected to train improved
models [27]. Such an iterative process fits a CI/CD life cy-
cle, where incremental improvements are continuously deliv-
ered end users through a secure, automated pipeline. Rasa
also maintains official Docker images for NLP and Actions
servers, streamlining the process of containerization and or-
chestration.

The following sections detail the development environment
and describe the status of the prototype at each version of the
framework. Version 1 allowed for Kubernetes deployment
but lacked CI/CD pipeline integration. Version 2 is a security-
enhanced Kubernetes deployment with full CI/CD pipeline
integration.

3.1 Environment

Our work extends an existing Kubernetes framework for
cloud computing education [1]. This framework is designed
to support complex, full-stack applications within a Kuber-
netes cluster. Projects within this framework are deployed
on CloudLab, an academic cloud. Founded by the National
Science Foundation in 2014, CloudLab was built to provide
researchers with a robust cloud environment for computing
research [28]. Within CloudLab, infrastructure is deployed
as time-constrained experiments. Experiments are configured
through a profile written in Python. Through this profile,
startup scripts can be leveraged to configure a multi- node
Kubernetes cluster within a provisioned experiment. The first
version of this framework relied on Bash scripting to deploy
a Jenkins server within the cluster [29]. Further configuration
of Jenkins, required a manual step through the Jenkins UI at
the start of each CloudLab experiment. A second version of
the framework introduced automated configuration and de-
ployment of the Jenkins server through Helm charts. With
Helm, configuration values are stored in reusable YAML files
to simplify deployment [30].

Further, this second version introduced several security fea-
tures such as ingress control, TLS (Transport Layer Security)
certification, and access control [31]. Security policies are
defined to restrict ingress traffic. As outlined in Figure 3,
an ingress controller is deployed within the cluster to route
traffic to internal services and attach certifications. An Ng-
inx server on the cluster’s head node routes traffic from stan-
dard ports 80/443 for HTTP/HTTPS traffic to the ingress con-
troller. This is necessary as the default port range for Kuber-
netes deployments is [30000, 32767], which may be restricted
by user-end firewalls. The ingress controller attaches TLS

Figure 3: Security-enhanced framework

certificates to ingress objects, thus enabling HTTPS traffic.
A certificate manager is deployed within the cluster to man-
age certificates signed by LetsEncrypt, an open certificate au-
thority [32]. These verified certificates are made available to
internal services and trusted by internet browsers on the user-
end. Container images are stored in a private Docker registry.
This eliminates the need to maintain a public, external reg-
istry through DockerHub, a popular Docker registry service.
Deploying the private registry within the cluster follows se-
curity best practices, as it reduces ingress and egress traffic
required for internal services. Lastly, RBAC authorization is
enabled within the cluster to control access to resources. Par-
ticularly, the Jenkins server now requires a service account to
authorize CI/CD pipeline execution over cluster resources.

3.2 Version 1: Kubernetes Deployment

At the end of the first phase of development, the prototype
was incomplete [33]. While the back-end was functional for
a base case’s workflow, the front-end Web UI was not devel-
oped to a functional state. Each component was successfully
containerized and deployable within the Kubernetes cluster.
Although this version of the framework included Jenkins,
the manual configuration step impeded the implementation
of CI/CD pipelines. Instead, manual deployment of resources
was enabled with Docker-Compose to build images and Bash
scripting to deploy pods. The status of each component we
outlined in Figure 2 is detailed as follows.

The Web UI was composed of an HTML file mimicking a uni-
versity site with a popup chat interface. The development of
a Socket.IO chat interface to enable communication between
the site and chatbot was unsuccessful. Socket.IO was the pre-
ferred method due to built-in integration with Rasa and Web-
Socket encryption. This failure was attributed to the priori-
tization of the back-end workflow within the time constraint
of this development period. The nonfunctional Web UI was
deployed as an Nginx container made accessible to external



traffic directly through a NodePort protocol. Through this
protocol, a port within the Kubernetes default range is ex-
posed for external traffic.

The Chatbot was functional as a prototype. The NLP server
was able to parse intent from user inputs and make the appro-
priate request to the Actions server.The Actions server was
able to query the Database and return data to the NLP server.
Considering that the Web UI was not functional, testing re-
quired running a Python script within the NLP server con-
tainer to launch a command line chat interface. Success was
measured based on the Chatbot’s capability to handle a base
case of user input requiring a request to the Database. For
this base case, a user can request information on upcoming
campus events in natural language. The NLP server parses
out the intent, ”event search”, and maps it to the appropriate
action. In the Actions server, a python file defines a set of
actions in the form of classes through the Rasa SDK (Soft-
ware Development Kit). Each server is containerized sepa-
rately and deployed jointly as a multi- container pod within
the cluster. The NLP server trains an NLU model and config-
ures connection to the Web UI. The Actions server is built
with the Rasa SDK for Python. Rasa SDK simplifies the
process of receiving requests from and sending replies to the
NLP server. Beyond that, Python is used to carry out API
calls needed to fulfill requests. For our use case, dependen-
cies for MySQL database connectivity are loaded in the con-
tainer. When the Actions server receives a request to perform
an ”event search”, a function queries the database for a set
of records containing event information. This information is
dispatched to the NLP server to be returned to the user. This
base case was implemented successfully, but further function-
ality was not developed.

The Webscraper was composed of a Python script to populate
the Database with data collected from specific university do-
mains related to campus events. This script relied on several
dependencies for web crawling, data extraction, and MySQL
database management. The script was containerized and de-
ployed as a Kubernetes job to execute a single time.

The Database was a standard Kubernetes deployment of
MySQL. It stored university-related data accessible to the Ac-
tions server. The deployment pulled directly from the offi-
cial MySQL image and required a persistent volume for stor-
age within the Kubernetes cluster. Database credentials were
hardcoded within configuration files.

3.3 Version 2: Security-enhanced Deployment
with CI/CD

The second phase of our development with the security-
enhanced framework is ongoing. Within the new frame-
work, the development process of the Chatbot [23] has im-
proved significantly. Critically, the use of Helm to automate
the deployment the Jenkins server facilitated CI/CD integra-
tion. The development process now benefits from full CI/CD
pipeline integration, making the continued development of

the Chatbot more efficient. Development of individual com-
ponents is streamlined. We follow a branch-based CI/CD in-
tegration, where separate pipelines deploy each component
independently. This allows for component updates to be de-
livered without affecting the availability of other components.
As outlined in Figure 3, the CI step of each pipeline is trig-
gered when changes are committed to the specific branch of a
Git repository. This step uses Docker commands to build new
images and store them in the private Docker registry. Access
to the registry is managed through signed certificates from the
certificate manager. In the CD step, the pipeline pulls images
from the private registry and deploys containers to the clus-
ter. With this integration, several improvements have been
made. Components now benefit from dynamic configuration
through parameter substitution in pipeline runs. Within the
Linux environment of the CloudLab experiment, this involves
the Unix command, SED, for string replacement within con-
figuration files. This simplifies the process of migrating, or
redeploying, to new CloudLab experiments by removing the
need to manually update hard-coded configuration values.

Component improvements are ongoing. A Socket.IO chat ap-
plication for the Web UI is soon to be realized. The introduc-
tion of ingress control and TLS certification is a more secure
and convenient solution compared to the NodePort proto-
col. While Socket.IO secures the communication between the
Web UI and the NLP server, HTTPS ensures communication
between the user’s browser and the Web UI is secure. More-
over, the ability to define host names routed to each service
through the ingress controller simplifies the internal network-
ing architecture. Improvements to the Chatbot include entity
extraction and updated training data within the NLP server.
Deployment of the NLP and Actions containers will be sepa-
rated to independent pods to improve service reliability. The
Webscraper is being adapted into a continuous service to up-
date the Database with new information from university sites
or to repopulate the Database in case of severe service dis-
ruption. Access to the Database is secured through param-
eter substitution and secrets management. The application
of RBAC for Database authorization rather than passwords
is being explored. Feature ideas for improving the prototype
include defining actions for querying granular event informa-
tion, allowing for personalization of the Chatbot through user
accounts, and expanding the Chatbot’s domain to provide ex-
panded university utilities. At the framework level, inspired
by the difficulty in developing a Web UI component, future
work can explore to development a modularized solution that
can facilitate the integration of chatbot deployments into ex-
isting front-end sites.

4 Discussion

Development with the initial version of the framework was
considerably slow. Early development focused on research
into chatbot development patterns and cloud computing prin-
ciples. The adoption of containerization facilitated the de-
sign process, as chatbot workloads were readily mapped to
containerized components. The priority of this development



period was a successful Kubernetes deployment with a func-
tional back-end workflow for basic use cases. Much of this
development period over-relied on manual deployments with
the help of Bash scripting and Docker-Compose. Configura-
tion values were hard-coded into files, making redeployment
across CloudLab experiments a tedious, error-prone process.
The development of the NLP server, in particular, was hin-
dered by lengthy model training steps prior to deployment.
Integrating CI/CD practices early in this development period
would have alleviated these issues.

The security-enhanced framework is a significant improve-
ment over the initial version. Implementing automation ser-
vices and security best practices allows for development to
be in line with industry standards. This is the key contribu-
tion of our work. The framework provides a solid foundation
for future work that integrates a variety of concepts critical to
real-world applications. Although the prototype has not been
developed to the level of a full-fledged chatbot solution, the
experience serves to highlight the flaws and benefits of the
framework. A containerized approach makes the framework
extensible across environment contexts. Each component is
interchangeable with alternate implementation technologies
to meet differing needs. Kubernetes-based solutions for ML
applications are a well-established standard [16], [17], [18].
This robustness is further enhanced by the consideration for
security best-practices, both for general Kubernetes deploy-
ments and those specific to chatbots [10], [9]. The integration
of CI/CD for chatbots, or ML projects in general, is an on-
going area of research [20]. Our current integration brought
noticeable improvement to the development life cycle of the
University Chatbot prototype. Future work would benefit
from adapting pipelines to meet ML-specific workload needs,
such as automated testing for NLU models [21].

5 Conclusion

The current framework provides a solid foundation for future
research into cloud-native development of ML chatbots. Our
framework integrates containerization, orchestration, CI/CD,
and cloud security practices to inform an extendable pro-
cess for chatbot deployment. The University Chatbot pro-
totype developed demonstrates the utility of the framework
for deploying reliable, adaptable, and secure chatbots. Fur-
ther, as development continues, new requirements can inform
reassessment. The framework can be expanded in to meet
demands as they arise. At the current stage of development,
future improvements to be made include, but are not limited
to, the following:

• The inclusion of automated testing of NLU models
through Jenkins CI/CD pipelines.

• The expansion of RBAC authorization to specify granu-
lar authorization for internal service interactions.

• The development of a context-agnostic, front-end solu-
tion that can bridge the integration of chatbot deploy-
ments into existing front-end sites.

Such improvements would extend the utility and adaptability
of our framework for research and, potentially, industry-level
needs. Key to our work is the availability provided by the use
of open-source tools over an academic cloud provider. As
the prominence of chatbot technologies continues to rise, the
need for accessible, robust options for research and education
will also rise.
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ABSTRACT
The machine learning approach is vital in Internet of Things
(IoT) malware traffic detection due to its ability to keep pace
with the ever-evolving nature of malware. Machine learn-
ing algorithms can quickly and accurately analyze the vast
amount of data produced by IoT devices, allowing for the
real-time identification of malicious network traffic. The sys-
tem can handle the exponential growth of IoT devices thanks
to the usage of distributed systems like Apache Kafka and
Apache Spark, and Intel’s oneAPI software stack accelerates
model inference speed, making it a useful tool for real-time
malware traffic detection. These technologies work together
to create a system that can give scalable performance and high
accuracy, making it a crucial tool for defending against cyber
threats in smart communities and medical institutions.

1 Introduction

Since the emergence of the Internet of Things (IoT), the prob-
lem of malware attacks on IoT devices has remained a con-
stant problem. Technology improvements have caused the
difficulty to increase over time, both in terms of the volume
and the variety of the attacks [1]. According to research, ma-
licious attacks on IoT devices have significantly increased re-
cently. Zscaler’s research shows that during the pandemic
in 2022, malware attacks on IoT devices linked to business
networks have risen by 700% [2]. The development of the
internet, social networks, smartphones, and IoT devices have
allowed bad actors to produce malware that is more advanced
than ever before.

To protect against online attacks and maintain network sta-
bility, real-time and scalable malware detection solutions are
required to identify and stop malware traffic in IoT networks.
Due to its capacity to automatically detect and react to emerg-
ing malware threats in real-time, machine learning (ML) is a
key strategy in IoT malware traffic detection [3], [4], [5]. ML
models can swiftly scan this data to identify and prevent mal-
ware activity because IoT devices create enormous amounts
of data that make it challenging to detect malware using con-
ventional approaches. Because ML techniques are flexible
and adaptable, it is possible to continuously upgrade the mod-
els to detect new varieties of malware as they appear. Addi-
tionally, ML models have the capacity to learn from enor-

mous volumes of data and recognize patterns in the data that
can point to malware activity, enabling them to detect mal-
ware of previously unidentified forms.

However, current machine learning-based solutions for de-
tecting malware in network traffic often struggle to handle
the growing number of IoT devices and detect malicious traf-
fic with low latency. To address these issues, this paper pro-
poses a scalable end-to-end network traffic analysis system
that can detect malware in real-time. The system utilizes dis-
tributed systems such as Apache Kafka and Apache Spark,
allowing for efficient scalability as the number of IoT devices
grows. Furthermore, the use of Intel’s oneAPI software stack
for both machine learning and deep learning models has been
shown to improve the inference speed of the model three-
fold. Specifically, there are three main contributions to this
paper. (1) We seek to overcome the class imbalance and
model over-fitting issues from the prior works by enriching
the “IoT-23” dataset and adding a more diversified dataset
named “ToN IoT”. (2) We accelerate the malware traffic de-
tection inference speed with the use of Intel’s oneAPI soft-
ware. (3) We boost the system scalability and responsiveness
by implementing a big data platform that includes Apache
Kafka as the streaming engine and Apache Spark as the data
processor.

The organization of this paper is as follows. Section §2 sum-
marizes the previous works on IoT malware detection. Sec-
tion §3 depicts the overall design of the data pipeline. Section
§4 evaluates the performance of the methods. Lastly, Section
§5 concludes the paper.

2 Related Works

One of the traditional approaches for detecting malware traf-
fic is through the use of signature-based detection methods
[6], [7], which use a database of known malware signatures to
identify and block traffic that matches these signatures. While
this method can be effective in detecting known malware, one
of its biggest limitations is its incapability to detect unknown
attacks, and it does not cover the detection of large-scale at-
tacks.

To solve this problem, network behavior-based detection is
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proposed for malware traffic detection [8]. Behavioral mod-
eling methods focus on identifying and blocking malicious
traffic based on its behavior rather than its signature [9], [10],
[11]. This approach is more effective at detecting new or un-
known malware as it is not reliant on a database of known
malware signatures. However, it can be more resource-
intensive and may produce false positives. Most existing
studies in this area have limited scope, focusing on specific
malware types, such as Bots, or on particular attack types,
such as DoS, and anomalies in specific protocols or network
layers [12]. Another limitation of traditional detection solu-
tions is that the conventional solution depends on one network
premises; this cannot detect attacks that originated at differ-
ent network premises. Another problem is there is the case
that devices might still operate for a long time, even after in-
fection.

Another technique used in malware traffic detection is sand-
boxing, which involves creating a virtual environment in
which to analyze and test suspected malware [13], [14]. This
allows analysts to safely observe the behavior of the malware
and determine its potential threats.

Machine learning methods are introduced in the previous
works for malware traffic detection [15]. Kaluphahana et al.
[16] proposed Adept, a security framework that detects bots
attack and classifies them into attack stages across space and
time. Adept utilizes alert-level and pattern-level information
to classify the type and stages of attacks into categorical clas-
sification by using machine learning models, k-nearest neigh-
bor, random forest, and support vector machine. Moreover,
an end-to-end monitoring system RTC was proposed to iden-
tify new threats by manually extracting features from differ-
ent protocols and network layer traffic data [17]. However,
machine learning methods rely heavily on manual feature ex-
traction, which is a time-consuming and resource-intensive
process.

Since deep learning methods are efficient in feature extrac-
tions and automatic learning, the research on malware traf-
fic attack detection is shifting from machine learning to deep
learning [18], [19], [20], [21]. Sahu et al. [22] present a secu-
rity framework for IoT attack detection using a hybrid Deep
Learning model with two stages. Specifically, a CNN model
first learns the features from the IoT network traffic, then
the feature representation generated from the previous step
is used as the input of an LSTM model for attack detection.
However, whenever the network is scaled up by adding addi-
tional IoT devices, then an additional CNN module should be
accompanied by the connected network switch.

Table 1 shows the performance of machine learning and deep
learning models in classifying large-scale offensive accesses
within IoT systems. Goyal et al. [23] observe that SVM
and ANN models generate similar accuracy scores, while
the precision score of ANN model outperforms SVM by
4.3%. Long-Short-Term Memory (LSTM) is used to deter-
mine whether an attack or a benign attack can be detected
from a relatively small amount of data. Liang et al. [24] con-

Table 1: Model Accuracy in Surveys

Reference Model Accuracy Precision Recall F1
Goyal et al. [23] ANN 99.74 95.99 100 97.95

SVM 99.86 91.98 100 95.82

Liang et al. [24] LSTM - 99.98 100 99.99
SVM - 88.18 45.43 59.97

clude that the SVM model has an accuracy score of 88.18%,
but the recall and F1 scores are below 50. On the other hand,
the LSTM model has an accuracy score of 99.98%, and both
recall and F1 are close to 100.

3 Design

In this section, we present the design of the MalIoT system by
describing the overall data pipeline, data collection and gen-
eration, offline model training, and online model inference.

3.1 Overview to the Data Pipeline

The overall data pipeline is illustrated in Fig. 1. The infor-
mation originates from IoT devices within a local network,
which transmits their network activity through a smart gate-
way that houses the subsequent steps in the process. Initially,
the network activity is intercepted by a software sniffer Bro
on the smart gateway, which generates PCAP files from the
received data. These PCAP files are subsequently dispatched
to a Kafka producer, which transmits the data to a Kafka
topic. The Kafka producer ensures that the pipeline can be
scaled to accommodate additional IoT devices on the net-
work. The data is then ingested from the Kafka topic using
Spark streaming, which maintains the pipeline’s scalability
for any number of IoT devices. The data can then be uti-
lized for the purposes of retraining ML or DL models, or for
conducting an online inference on the network activity using
previously trained ML or DL models.
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PCAP File Generator
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Offline Training
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Online Inference
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Figure 1: Overall Design Pipeline
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3.2 Data Generation

To train various models, we need an initial dataset and a
method to retrain the models using fresh data to adjust to new
types of attacks. The retraining process is illustrated in Fig-
ure 2. When PCAP files are produced from the packet sniffer,
they can subsequently be used to retrain the models with the
real-time network traffic on the network. We employed the
IoT-23 Dataset and TON IoT Dataset as our starting datasets
for training the original models. We tested the accuracy of
machine learning and deep learning models using various fea-
ture subsets provided by the dataset and opted to use most
of the features, excluding the host and recipient IP addresses
and ports. These attributes didn’t boost model accuracy, as
they should not be linked with a malicious or benign attack
and would merely overfit our models. Once the foundational
models are established using the existing dataset, they can be
retrained as needed using the newly generated PCAP files.
For machine learning models, the desired features must be
extracted from the PCAP files before retraining, as well as
any other data preprocessing procedures.

Datasets: Aposemat IoT-23 datasets [25] are captured from
the network traffic of Internet of Things(IoT) devices. The
dataset was first released in January 2020 and covers captures
from 2018 to 2019. The IoT-23 datasets include 20 instances
of malware captured from IoT devices, along with 3 instances
of benign IoT device traffic.

ToN IoT datasets [26] are new generations of Internet of
Things (IoT) and Industrial IoT (IIoT) datasets captured from
a realistic and large-scale network with heterogeneous data
sources. It consists of datasets from IoT and IIoT sensors,
Operating systems datasets of Windows 7 and 10, Operating
systems datasets of Ubuntu 14 and 18 TLS, and Network traf-
fic datasets.

The basic information of each dataset is listed in Table 2.
IoT-23 datasets consist of 325,307,990 captures from differ-
ent IoT network traffics, including 294,449,255 malware cap-
tures executed in infected IoT devices and 30,858,735 cap-
tures from benign IoT device traffic. In the ToN IoT datasets,
the Windows 7 dataset has 28366 records and 132 features,
the Windows 10 dataset consists of 35,975 records and 124
features, and the Network dataset has 21,978,632 records and

42 features. To generate the final synthesized training dataset,
we integrate TON IoT and IoT-23 together and then supple-
ment the synthesized dataset with extra benign traffic from
the CIC IoT datasets [27] to balance the classification cate-
gories.

Table 2: Dataset Information

Dataset IoT-23 ToN IoT
Benign 30,858,735 300,000

Anomaly 294,449,255 161,043
Total 325,307,990 461.043

# of features 23 45
# of IoT devices 3 9

Features: The common features shared in between the two
datasets are listed in Table 3. In the experiments, we uti-
lized two types of feature selection for our machine learning
models: 1) the “Full Feature Set”, which contains all fea-
tures except for timestamp and unique identifier, and 2) the
“De-identified Feature Set”, which removes the TCP/UDP IP
address and port information of both the originating and re-
sponding endpoints. We removed this information to avoid
potential biases in the machine learning models when classi-
fying malicious traffic based on IP addresses and ports.

Table 3: IoT-23 and TON IoT Features Selection

IoT-23 Feature TON IoT Feature Description
ts ts Timestamp of connection

id.orig h src ip originator’s IP address
id.orig p src port originator’s TCP/UDP port
id.resp h dst ip responder’s IP address
id.resp p dst port responder’s TCP/UDP port

proto proto transport layer protocol of connection
service service service

duration duration duration
orig bytes src bytes originator’s payload bytes
resp bytes dst bytes responder’s payload bytes
conn state conn state connection state

missed bytes missed bytes missed bytes
orig pkts src pkts number of ORIG packets

orig ip bytes src ip bytes number of ORIG IP bytes
resp pkts dst pkts number of RESP packets

resp ip bytes dst ip bytes number of RESP IP bytes

3.3 Offline Model Training

As time progresses, new malicious attacks emerge and are
designed. What was once considered secure must adapt to
maintain its security in the present and future. This is espe-
cially true in the field of machine learning. To ensure our pre-
dictive models remain secure, they must be trained on more
up-to-date data. To support this, we have integrated a means
of retraining our various models with our own generated data.
The data passing through the pipeline is saved in a format that
enables easy retraining of our models at a later point in time.
Therefore, we need not rely solely on existing datasets to keep
our models up to date.

We evaluated five machine learning models and five deep
learning models. The machine learning model classifiers in-
clude random forest, decision tree, logistic regression, linear
SVC, and Gaussian-NB. The deep learning models consist



of artificial neural networks (ANN), 1D convolutional neural
networks (1DCNN), two-dimensional CNN (2DCNN), long
short-term memory (LSTM), and a combination of CNN and
LSTM. Each model possesses unique strengths and benefits
that prompted our decision to evaluate them. Regarding the
hyperparameters of our deep learning models, we used ReLU
as the activation function for all of the ANN and CNN mod-
els, except for the LSTM model, which uses ‘tanh‘ as the acti-
vation function and sigmoid as the recurrent activation func-
tion. The ANN only uses one layer, while all of the other
models use two layers. More details about our model hyper-
parameters can be found in Table 4.

Table 4: Deep Learning Hyper-Parameters

Parameter Value
learning rate 1e-3
decay rate 1e-5

dropout rate 0.5
dense units 128

n batch 100
n epoch 1
filters filters

kernel size 4
strides 1

CNN layers 2
clf reg 1e-5

3.4 Online Inference

After the network traffic is converted into PCAP files and pro-
cessed by Spark streaming, our previously trained model(s)
can make an inference on the data. As mentioned previously,
we have trained five types of machine learning models and
five types of deep learning models.

Upon entering the Spark streaming stage of the pipeline, all
new data is evaluated by one of the trained models based on
the data’s timestamp. Machine learning models generally re-
quire longer preprocessing times since feature extraction is
necessary, but inference/prediction times are quick as these
models are not very complex. On the other hand, deep learn-
ing models have less preprocessing time but longer inference
times due to their complexity. These models tend to be more
accurate on complex data, like that found in our pipeline. At
present, the pipeline concludes once an inference is made on
the network traffic, but the resulting inferences may be used
as desired.

4 Evaluation

This section of the paper evaluates the performance of our
proposed system. Specifically, we will talk about the speci-
fications of the testbed, and the accuracy and timing perfor-
mance of each machine learning and deep learning model.

4.1 Experiment Testbed

We summarize the system specifications and software ver-
sions for the testbed in Table 5. We use built-in Python tools
in order to collect our data, like training time, inference time,
accuracy, and CPU usage.

Table 5: Experiment Platform Specification

Item Specification
CPU Intel(R) Core(TM) i9-9920X CPU @ 3.50GHz
GPU GTX 2080 Ti with 11 GB DDR6 Memory

Memory 64 GB DDR4 @ 3600MHz
Storage 2TB SSD
Host OS Ubuntu 18.04 LTS

Tensorflow 2.7
Apache Spark 3.0.1
Apache Kafka 2.6.0

Accelerator Intel DAAL v2020.1

4.2 Model Accuracy Comparison

We calculated the prediction accuracy from machine learning
and deep learning models. In the machine learning inference
section, we design five machine learning models (Random-
forest, Decision-Trees, Logistic-Regression, Linear-SVC,
and Gaussian-NB) and two feature sets, the full feature set,
and the de-identified feature set.

Figure 3 shows the outcomes of machine learning models. In
addition, Figure 4 shows the outcomes from five deep learn-
ing models, Artificial Neural Network, Convolutional Neural
Network, Convolutional Neural Network 2D, Long-Short-
Term-Memory, and a combination of Convolutional Neural
Network and Long-Short-Term-Memory.
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Figure 3: Model Accuracy Comparison in ML

In the machine learning experiments, generally full feature set
marked a higher score. The first two models, random-forest
and decision-trees, almost reached 100%. The score of the
de-identified feature set is 75% on the whole.

In the deep learning section, the first three models were
marked as almost 100%. LSTM and LSTM+CNN, on the
other hand, scored about 75%.
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Figure 4: Model Accuracy Comparison in DL

Table 6: Inference Time for Machine Learning Models on Two Dif-
ferent Feature Sets

De-identified feature set (ms) Full feature set (ms)
Random-Forest 33.18 34.20
Decision-Trees 10.40 10.78

Logistic-Regression 10.30 10.71
SVC-Linear 10.30 10.68
Gaussian-NB 10.48 10.87

4.3 Inference Time Comparison

We measured the time of average time it takes for inference
per each line from CSV files. As same with before experi-
ment, we tested machine learning and deep learning. Figure
5 Shows the results from machine learning models, and Fig-
ure 6 Shows the results from deep learning models
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Figure 5: Inference Time Comparison in ML (ms)

This experiment shows that the random-forest model takes

Table 7: Inference Time for Deep Learning Models

Time per row (ms)
ANN 0.056
CNN 0.118

CNN2D 0.102
LSTM 0.378

CNN+LSTM 0.226

longer than other models. The reason seems that random-
forest runs decision trees in parallel. The other models make
inference per line around 2.6ms. In addition, the full fea-
ture set requires a little longer time to predict than the De-
identified feature set.
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Figure 6: Inference Time Comparison in DL (ms)

This experiment shows that all deep learning models make
inferences much faster than machine learning models. LSTM
models take a little longer than other models, but only 0.4 ms
per line

4.4 Scalability

Another key component of our research is scalability. We
measured the change in inference time depending on the num-
ber of supporting devices. In the test, we added the number
of devices from one to nine. Figure 7 Shows the outcome of
the trial.
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Figure 7: Time Comparison Depending on the Numbers De-
vices(ms)

The experiment shows the scalability of our model. Gener-
ally, the inference time per line decreases as the number of
connected devices gradually increases. Random-forest takes
longer to predict than other models, the same as the previous
experiment.



5 Conclusion

In our project, we were able to achieve the objectives of real-
time and scalable malicious network traffic detection by uti-
lizing Apache Kafka producer and Apache Spark. Our mod-
els were trained on an enriched dataset that comprises IoT-
23 and TON IoT which contains millions of network flows
with information on both malicious and benign network traf-
fic. Upon preprocessing the data, we were able to perform
inferences on it using the various models we developed. This
process could be automated on a smart gateway to enable
real-time detection on a local network. We have made the
source code for this project available on GitHub for future re-
search purposes. It can be accessed via the following link:
https://github.com/BlueJayADAL/NetSec.
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ABSTRACT
Recommender systems play a crucial role in delivering a per-
sonalized user experience. This is especially true for music
streaming services like Spotify, which aim to curate music
based on listeners’ preferences to maintain engagement and
stay ahead in a competitive market. This paper proposes a
model designed to predict whether or not a user will skip a
song based on information available within the user’s cur-
rent listening session. A dataset provided by Spotify for a
machine learning challenge is utilized and augmented with
features that we propose to help measure the “distance” be-
tween a song and songs that have been either listened to or
skipped within the same session. We demonstrate that using
our model, a prediction can be made on whether a user will
skip the final song in their session that is 78.23% accurate.
An analysis of feature importance is also presented to better
understand which factors might be most influential in predict-
ing this user behavior. The ability to predict whether or not
a song will be skipped or played could be utilized in future
work to dynamically impact song selection within a listening
session to minimize the number of songs being skipped by
the user.

1 Introduction

Music streaming platforms implement extensive and complex
recommender systems in order to predict exactly what a user
wants to listen to. Giving relevant recommendations is ex-
tremely important as it improves a user’s listening experience
and overall satisfaction. In a competitive market with many
services vying for each user’s time and money, the ability to
accurately predict what an individual user wants becomes a
critical factor in the success of a music streaming service such
as Spotify, Apple Music, or YouTube Music. In this paper, we
will focus on Spotify since we are utilizing a dataset provided
by the service for a machine learning challenge [1].

Given the importance of its recommendations to its success,
Spotify has naturally devoted considerable resources to cre-
ating its own multi-armed bandit model for content recom-
mendation. A multi-armed bandit algorithm is a reinforce-
ment learning technique named after the one-armed bandit
slot machines at casinos [2]. The agent is tasked with multiple
“arms” to pull or, rather, choices to make, each with unknown

rewards. The “arms” in this case are different songs to rec-
ommend, and the rewards are user interactions with the song
chosen, such as a “skip” or a “like”. Spotify’s model is called
Bandits for Recommendations as Treatments (BaRT), and it
uses three main functions to make the most accurate song sug-
gestions for users: natural language processing (NLP), col-
laborative filtering, and raw audio analysis. Natural language
processing is used to parse lyrics, user-created playlist names,
and web-crawled data from media about a given song. This
information helps to categorize tracks by their content and
how listeners and critics perceive them. Collaborative filter-
ing is a powerful technique that compares the listening history
of similar users. So, if a user’s listening history is very simi-
lar to user X, they will likely enjoy the tracks that user X has
liked that they have not listened to yet.

Finally, Spotify analyzes the raw audio of each track by
first generating a time-frequency representation of its audio
frames. This is then used as input to a convolutional neural
network (CNN) as seen in Figure 1. CNNs are typically used
with visual data, but for this case, it is examining raw audio
instead of pixels. From this model, audio features are output
such as key, tempo, danceability, and loudness. This method
provides a deep understanding of each song despite having a
lack of user data in the case of new or unpopular music [3].

Figure 1: A convolutional neural network architecture used by Spo-
tify

These techniques efficiently generate tailored playlists, per-
sonalize the home screen, and recommend new music.
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When making a recommendation, systems often face the
exploration vs exploitation trade-off [4]. That is, when a
user faces a decision about what to listen to or watch next,
they may opt to explore new content or exploit their exist-
ing knowledge of what they know and enjoy. This trade-off
occurs at multiple levels in recommendation systems. For ex-
ample, a system could opt to try to find out more about the
user’s preferences by presenting them with music the system
is not sure they’ll like (exploring the user’s preferences) or
the system could exploit its knowledge about the similarity of
a song to others that the user already enjoys. A user could
also explicitly opt into exploration by selecting “Discovery
Mode” or they might decide to play a tried and true playlist
of their own creation.

Given the nature of exploration, both on the part of the user
and the system, it is natural that a user will be presented with
some songs that they simply do not like and will opt to skip.
However, an analysis of user listening behavior showed that
an astounding 48.6% of songs on Spotify are skipped before
being played until the end and 24.14% are skipped within the
first five seconds [5]. This is, of course, more than just users
skipping a song that they are unfamiliar with and do not en-
joy. It is common for users to skip through the playlists that
they have created themselves (and obviously already enjoy)
to find what they are most in the mood for during a particular
listening session. It is this level of behavior that we are in-
terested in understanding. In this situation, the user’s general
music taste is irrelevant because they are listening to a collec-
tion they have already proclaimed to enjoy. But they are in a
particular mood, skipping through songs that they like, but do
not want to listen to at the moment. Given this behavior, the
most relevant information (and therefore the information we
wish to exploit) is limited to the specific session. Our research
question, therefore, is whether we can use the session data to
accurately predict whether or not a user will skip a particular
song. If we can, then this ability could then be used to queue
songs that the user actually wants to hear at that moment. Ad-
ditionally, we wanted to gain a better understanding of which
features are most important in guiding these predictions.

2 Related Work

Recommender systems for session-based data must use sub-
stantially less information than other methods. Instead of
having a user’s long-running history, only a few of their inter-
actions with the platform are available. There is no user pro-
file to pull information from. For the purpose of fine-tuning a
shuffle algorithm on a session-by-session basis, it is ideal that
only the current session’s data is used for that decision.

Recurrent neural networks (RNN) are a successful and popu-
lar solution to the task of sequence-based predictions [6, 7].
Previous solutions involved item-to-item recommendations
by simply recommending similar items, but an RNN is able to
model an entire session and achieve greater success. For our
purposes, we wanted to be able to have more transparency and
insight into which features were most important in predicting

whether or not a song would be skipped than a neural network
would readily allow. For this reason, we did not use an RNN,
though it is undoubtedly worth investigating in future work.

Many high-performing solutions to Spotify’s Sequential Skip
Challenge [1] (explained in section 4) utilized more than one
model to make a prediction. Hansen et al. [8] achieved 2nd
place in the challenge by using two RNNs. One RNN was
tasked with encoding the first half of a session, which was
used as input to a second RNN that makes predictions. Bères
et al. [9] and Ferraro et al. [10] reached 10th and 14th place
respectively by combining the output of multiple boosting
trees.

3 Approach

In order to predict whether a listener will skip a song, a ran-
dom forest classifier was trained to label each final song in a
session as being skipped or not. Highly accurate solutions al-
ready exist [6–9,11] that use a variety of deep learning meth-
ods however, random forests were chosen for this task be-
cause they allow the overall importance of each feature to be
measured. Random forests also reduce overfitting by aggre-
gating the predictions of multiple decision trees. Each deci-
sion tree in the ensemble uses a random set of features and a
different subset of training data [12].

In 2019, Spotify in collaboration with The ACM International
Conference on Web Search and Data Mining (WSDM) re-
leased a dataset of roughly 130 million listening sessions. It
was released as part of a challenge hosted by AIcrowd [1] to
predict if users will skip a track or not based on their behavior
within the first half of a given session. During the challenge,
the training data was comprised of the first half of the session
and the test data (withheld from the participants) was the sec-
ond half of the session. The challenge had ended before our
research project but the training data was still available and
useful for exploring our research questions. In the next sec-
tion, we discuss the data in detail, including the preprocessing
and feature engineering that we performed.

4 Data

Our dataset of 200,000 sessions was a subset of the training
data from the Spotify Sequential Skip Challenge described
above. Since we were using the original training data as both
our training and test datasets, we treated the first half of the
sessions (the original training data) as an entire session and
made it the goal of our model to predict whether the last song
in a session would be skipped or not.

For each track in a listening session, there are two categories
of features available in the original data: 1) track features
and 2) metadata features. The track features (discussed in
Section 4.2) include those output by the CNN shown in Fig-
ure 1 given the track’s time-frequency representation while



the metadata features provide context for the session (as dis-
cussed in Section 4.3). We also engineered a number of our
own features to help to examine our hypotheses (Section 4.4).
Because one of our goals for this project was to understand
the importance of various features and categories of features
in predicting whether a song will be skipped in a session, we
include an analysis of feature importance as we discuss the
data in the following sections.

4.1 Preprocessing

We treat each session as a row in our dataset. On average,
each session contains 15 tracks. For each track, the data
includes variables called “skip 1”, “skip 2”, and “skip 3”
which tell how long a song was listened to before being
skipped. In our experiment, we ignored these fields and use
a boolean “not skipped” feature instead. For the last track in
a session, the “not skipped” value was what was learned and
predicted by our model.

The session datasets were first stripped of the majority of their
metadata. Information regarding how each track ended was
removed as it implicitly indicates whether songs have been
skipped. The only additional information that was kept was
data that could be generalized across the entire session such
as the date, hour of the day, and if the user is a premium Spo-
tify user. Then, the last song of each session was isolated into
a separate dataset to prevent any of the target song’s features
from being included in the training process.

Along with the metadata features, each song within a session
of the original dataset contains a track ID of the song. The
track ID can be used to locate the track features of songs in
a separate file. An 8-dimensional acoustic vector that rep-
resents the track is also provided. The only preprocessing
required for the track features was to change the “Mode” col-
umn to numerical values of 1 and 0 rather than “Major” and
“Minor”, and to normalize the data. These changes were nec-
essary in order to treat the features as a vector for distance
calculations.

4.2 Track Features

Each track in a session has 21 numerical features that describe
the song and its acoustic structure.

• Duration
• Release Year
• U.S. Pop. Estimate
• Acousticness
• Beat Strength
• Bounciness
• Danceability
• Dynamic Range Mean
• Energy
• Flatness
• Instrumentalness

• Key
• Liveness
• Loudness
• Mechanism
• Mode
• Organism
• Speechiness
• Tempo
• Time signature
• Valence

A majority of these features, specifically duration, release
year, key, mode, and tempo are exactly what they seem. How-
ever, Spotify includes a few values that are not so straight-
forward. According to Spotify’s API, danceability tells if
a track is suitable for being danced to based on its tempo,
beat strength, and rhythm stability. A track’s valence tells
how positive and euphoric a track is. For example, ‘Toxic’
by Britney Spears is rated as 0.924, while Lana Del Rey’s
‘Summertime Sadness’ scores a 0.22. Also, liveness conveys
how likely it is that the track was recorded live, with an audi-
ence present. The 8-dimensional acoustic vector is also given,
though each value is quite abstract as it represents the song’s
structure at a lower level.
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Important Features: Track Features

Figure 2: Ranking of the features of a model only trained on Spotify
track features

A baseline model was trained to predict if the final song of
a session will be skipped based only on its track features.
Figure 2 shows how predictive each of these features were.
When making a prediction solely on the structure of a given
song, the model may be learning which songs fade out into
interludes, or contain a few seconds of silence at the end. The
acoustic vector features are too abstract to understand exactly
which quality of the track it represents, but duration as a fea-
ture is easy to justify. The longer a song lasts, the more time
there is for a user to skip it. This model was only 53.67% ac-
curate at predicting whether the final song would be skipped
in a session, so the track features as raw data only perform
roughly as well as a random guess.

4.3 Metadata

Additionally, the data for each session includes features pro-
viding context for the session. This context can provide in-
formation about factors that have been shown to impact user
behavior such as the fact that users have been shown to skip
less often at times of the day when they are not paying at-
tention to the music (for example, when they are asleep or at
work) [5]. The hours in between those typically less attentive
times contain more skips. Similarly, users skip more during



weekends than weekdays possibly because they are able to
pay more attention to their music [5]. The following four fea-
tures were included in our dataset:

• Month

• Hour of day

• Day of the week

• Spotify premium user

Note that the metadata features exist at the track level in the
original dataset but that we generalize them to the session
level so that we can attempt to capture some of the behavior
described above (like skipping more on weekends). There
were some features for which this generalization did not make
sense such as how a track ended, if there was a pause before
a track, and the type of collection the user is listening to. The
first two very obviously apply to a track rather than a session.
But the type of collection that a user was listening to may also
vary across tracks in a single session.
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Figure 3: Ranking of the features of a model only trained on Spotify
metadata

In order to get a sense of the relative importance of each of
these features, we trained our model using only this metadata.
Figure 3 shows the Feature Importance Scores of each of the
four features. The fact that hour of day and day of week are
more important than month seems to support our hypothesis
(and others’ observations [5]) about there being regular times
when users skip more or fewer songs. Whether or not a user
is a premium Spotify user impacts how many skips they are
permitted per hour, so it is not surprising that this feature is
relatively important in this set. The accuracy of the model
trained only on this data is 59.55%. It is interesting that this
model performed better overall than the model trained only
on the Spotify track features, and shows that skipping behav-
ior may be more closely related to overall behavior patterns
than to individual song attributes.

4.4 Feature Engineering

Our primary hypothesis in this project is that user behavior
exhibits a degree of consistency within a session. Based on
this premise, it is posited that listeners are likely to skip songs
that are similar to those they have previously skipped, while
also being inclined to listen to songs that are similar to those
they have already listened to within the same session. In order
to test this hypothesis, two categories of additional features
were created regarding 1) the “closeness” of the last song
to the previous tracks in a session and 2) contextual features
from the session.

Song Similarity Metrics

To evaluate the similarity of songs within a session, we repre-
sent the 21 track features in combination with the supplied
8-dimensional acoustic vector as a 29-dimensional vector,
which we compare using linear algebra. Because we were
unsure which distance measures would be most effective, we
calculated several different distance metrics, augmented our
dataset, and examined the resulting random forests to learn
more about the behavior of these metrics.

The idea of using feature vectors was inspired by the way
Spotify compares its millions of tracks by representing them
as vectors in a high-dimensional space. To facilitate this pro-
cess, Spotify’s developers created a library called ANNOY,
which stands for “Approximate Nearest Neighbors Oh Yeah”
[13]. ANNOY is designed to handle large-scale data sets ef-
ficiently and uses a tree structure for this purpose. The data is
split recursively into smaller sections using randomly placed
hyperplanes, with each node in the binary tree representing a
part of the data. The two children of each node represent a
further subdivision of the parent data. By randomly generat-
ing multiple trees out of the data, the nearest neighbors can
be found using the union of all trees. This allows ANNOY to
perform approximate nearest neighbor searches quickly and
accurately.

Spotify uses ANNOY to make specific recommendations for
a user based on their previous favorites, playlists, etc. Our
problem is more specific, given that we want to model the
user’s behavior in a single session to find out what they’re in-
terested in listening to at that moment. We hypothesized that
if a song is similar (or “close”) to other songs the user has
listened to in a session, it is more likely that they will want to
listen to the song. Similarly, if a song is closer to other songs
the user has skipped in this session, the user is more likely to
skip the song. There are many different ways to mathemati-
cally express “closeness” between vectors, so thirteen differ-
ent features were proposed and calculated so that we could
evaluate their relative effectiveness in a random forest model.

The first distance calculation used was Euclidean distance
which is defined as the square root of the sum of the squared
differences between the elements of two vectors [14]. It is
a common metric that measures the straight-line distance be-
tween two points in N-dimensional space. Manhattan dis-



tance is another metric that measures the distance between
two vectors. It is the sum of the absolute differences between
the elements of both vectors [15]. Instead of a straight line,
this calculation gives the distance by simulating movement
along a grid, only being able to move horizontally or verti-
cally. We also utilized the angle between two vectors, calcu-
lated using the cosine of the angle between the vectors, which
is the dot product of the vectors divided by the product of their
magnitudes [16]. The smaller the angle is, the more similar
the vectors are.

Each of these metrics was used to find the distance between
the final song (the one we are trying to predict whether the
user will skip) and the most recently played song, the most
recently skipped song, the average played song vector, and
the average skipped song vector. The average vectors were
utilized to represent the aggregate of the previously played or
skipped songs in the session as a single vector. In addition
to these metrics, a k-d tree [17] was used to find the nearest
neighbor of the last song played.

Table 1: Distance Metrics

Name Description

AvPlay Distance between the final
song and the non-skipped
average vector, calculated
with Euclidean, Manhattan, or
Angle

AvSkip Distance between the final
song and the skipped average
vector, calculated with
Euclidean, Manhattan, or
Angle

LastPlay Distance between the final
song and the last non-skipped
song, calculated with
Euclidean, Manhattan, or
Angle

LastSkip Distance between the final
song and the last skipped
song, calculated with
Euclidean, Manhattan, or
Angle

neighborSkipped A boolean indicating whether
the final song’s nearest
neighbor was skipped

Table 1 lists the distance metrics that were calculated and
added to the dataset for each session. Given that the first
four metrics were calculated with Euclidean, Manhattan, and
Angle, this resulted in twelve separate features. With neigh-
borSkipped, there were thirteen total features.

Notice that we are trying to capture and understand the rela-
tive importance of both the aggregate behavior over the ses-
sion (the averages of played and skipped songs) and the most
recent behavior (the last skipped or played song). For ses-

sions in which all songs were only skipped or played, the
distance between the final song and that empty category was
recorded as -1.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Feature Importance Score

neighborSkipped

manLastSkip

manLastPlay

angleLastPlay

euclidLastSkip

manAvPlay

angleLastSkip

euclidLastPlay

eucAvPlay

angleAvPlay

Fe
at

ur
es

Important Features: All Metrics

Figure 4: Top 10 most important features of a model trained on sim-
ilarity metrics. Features not shown ranked ≤ .05

When considering these similarity metrics, we knew that
there would be a high degree of correlation between the Eu-
clidean, Manhattan, and Angle features but we wanted to ex-
plore the results from the random forest to see if one category
of distance measure tended to perform better overall. We uti-
lized all thirteen of the features collectively in order to train a
random forest model. When examining the importance of the
features as shown in Figure 4, the Manhattan metrics ranked
the highest relative to the Euclidean and Angle metrics. This
aligns with the findings of Aggarwal et al. [18] who demon-
strate that in high dimensions, Manhattan is preferable com-
pared to Euclidean.

Given this analysis, we utilized the Manhattan metrics (man-
AvPlay, manAvSkip, manLastPlay, and manLastSkip), along
with neighborSkipped, in our final dataset. In terms of fea-
ture importance within this set, the results are shown in Fig-
ure 5. Here it makes sense that the similarity to the aggre-
gation of skipped songs would be the least important metric
since we would anticipate a wide variety of songs could be
skipped within a session, whereas we hypothesize that played
songs would have more common attributes/similarity. A ran-
dom forest trained using only these five features achieved a
67.57% accuracy, indicating that the feature engineering we
did in using a vector space to abstract some of the context of
the session in terms of the types of music being listened to
and skipped had a positive impact.

Contextual Features

We also calculated two contextual features to include in the
dataset. These features were intended to provide additional
information beyond the distance metrics used to compare the
songs within the session. These features are shown in Table
2.
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Figure 5: Ranking of the features of a model only trained on final
metrics

Table 2: The two contextual features that were added and their de-
scriptions

Name Description

percent skipped The percentage of songs in the
session that the user has
skipped

prevSongPlayed If the user skipped or played
the previous song

We hypothesized that the percentage of songs a user has
skipped in their session might indicate their current level of
engagement with their music, as discussed in Section 4.3. A
user skipping a majority of the songs that have been played
suggests that they are engaged and paying attention and are
likely to skip again, only fully listening to songs they really
want to hear. Similarly, if the user skipped the most recently
played track, this might indicate that they are currently active
and paying attention at that moment (even if they were not
skipping much earlier) and are more likely to skip again.

As with the other categories of metrics, we trained a random
forest using just these two features. In terms of importance,
both ranked highly with percent skipped having a score of
53.3 and prevSongPlayed having a score of 46.7. Given that
there were only two features being utilized, we did not have
expectations of high accuracy with this model. However, it
was quite surprising that the random forest accurately pre-
dicted whether a user would skip the last song in a session
76.01% of the time. We will discuss our ideas about possible
reasons for this in the next section.

5 Results

After preprocessing and feature engineering were complete,
each row of our dataset (representing a session) contained 5

metric features, 2 contextual features, 4 metadata features, 21
original track features, and an 8-dimensional acoustic vector
totaling 40 features and the target value of whether or not the
final song was skipped. We then split the 200,000 sessions
into a training set containing 70% of the sessions and a test
set containing 30% of the sessions.

The random forest models were implemented in Python and
utilized the random forest classifier from the sklearn library.
The final ensemble was made up of 100 trees, each with a
maximum depth of 6. In order to understand the role of dif-
ferent features and feature categories in the model’s success,
several random forests were created, each using different sets
of features. The results of these models were presented as we
discussed each category of feature, but are summarized for
comparison here, along with the results of our final models.

Table 3: Random forest results using different groups of features.

Source Categories Accuracy

Track Features 53.67%
Spotify Metadata 59.55%

Track Features & Metadata 59.81%

Metrics 67.57%
Engineered Contextual Data 76.01%

Metrics & Contextual Data 78.26%

All Data 77.69%

Final Model 78.23%

As a baseline, the first iteration only used the 29 original track
features of the final song in a session. In this case, the con-
text of a session is ignored completely. The model had to
rely on the structure of a single song in order to decide if it
will be skipped or not. It has been shown by Montecchio et
al. [19] that a user’s behavior (skipping or not) can be con-
nected to the musical structure of a track, but it is clear that
the track features in this dataset are not allowing us to cap-
ture this. This model is the least complex and had 53.67%
accuracy as shown in Table 3. Then, using only certain meta-
data from Spotify as described in section 4.3, an accuracy
of 59.55% was reached. Combining these groups of data
from Spotify did not meaningfully improve the random for-
est’s predictions.

In order to gauge the effectiveness of our engineered features,
they were each used in isolation. Metrics alone achieved
67.57%, and Contextual Data, despite having only two fea-
tures, was even more accurate at 76.01%. It is evident that
the track features are more effective when used to try to rea-
son about the musical context of a session than when a sin-
gle track’s features are used without this context (as in Sec-
tion 4.2). When these two groups of features (Metrics and
Contextual Data) were combined, the model achieved an ac-
curacy of 78.26%. It was surprising to us that the similarity
metrics representing musical context only yielded a small im-
provement in accuracy over the Contextual Data alone. This
seems to indicate that the overall user pattern of behavior



(skipping or not skipping) may be more important than the
user’s musical mood.

Table 4: Confusion Matrix for Final Model

Predicted Predicted
Played Skipped

Actual Played 67% 33%

Actual Skipped 14% 86%

Using both the original Spotify features and our newly engi-
neered features in a model (shown as “All Data”) resulted in
slightly lower accuracy than when only the engineered fea-
tures were used. This was an unexpected outcome, but we
hypothesized that it was due to the near-random-guess perfor-
mance of the Track Features as a whole. So our final model
uses Metrics, Contextual Data, and Metadata, and achieves a
predictive accuracy of 78.23%.

Because the classes being predicted (skipped and played) are
roughly balanced in both our training and test data, we knew
that there was some learning taking place to attain an accu-
racy of 78%. However, we were interested in the types of
mistakes the model was making and where, potentially, im-
provements could be made. The confusion matrix presented
in Table 4, shows that the performance of the model in pre-
dicting songs that are skipped is better than its performance in
predicting the songs that will be played. This, combined with
the small increase in accuracy from the inclusion of our engi-
neered similarity Metrics with the Contextual Data leads us to
believe that we are leaning too heavily on the user’s general
behavioral patterns (skipping vs not skipping) and that there
is more exploration to be done in learning the type of music
that the user is currently interested in hearing. This observa-
tion is further upheld in our analysis of feature importance in
the next section.

5.1 Feature Importance

One of the goals of this research was to discover which fea-
tures in the data were the most predictive. When using a
random forest, it is possible to calculate which features con-
tributed most to the final predictions. For this, Mean De-
crease Impurity (MDI) was used to calculate feature impor-
tance. MDI measures the average decrease in the impurity of
nodes when splitting the data on a particular feature. Nodes
are impure when they contain data from different classes. If a
feature has a high MDI score, it effectively splits data into
more homogeneous groups, making the most progress to-
ward a prediction. Using the Python libraries matplotlib and
seaborn, visualizations of these scores were generated.

Figure 6 shows the importance of a track’s acoustic features
and metadata when making a prediction of whether a user
will skip a song. The prominence of the premium feature
is straightforward to understand. Users without Spotify pre-
mium have a limited amount of skips, and therefore will use

them more sparingly. The rest of the metadata features are
ranked lower than expected. The month feature was found to
be not important at all. This can be attributed to the fact that
the data was not equally distributed across all months, caus-
ing the feature to not be properly understood by the random
forest. It seems to be the same situation for day of week as
this feature also scored unexpectedly low.
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Figure 6: The top 10 most important features of a model trained on
Spotify’s data (Track Features and Metadata). Features not shown
ranked ≤ .033

Of our engineered features, the contextual data is extremely
predictive. When combined with the metrics it dominates the
rankings in Figure 7. If we had not run the metrics by them-
selves first, it would seem as if they are not predictive at all.
According to the MDI scores, the contextual data is simply
more relevant in making successful predictions in this model.
As mentioned previously, this suggests that our future work
should be concentrated on improving our metrics in order to
be able to better recognize the songs that the user is most in-
terested in listening to.

Focusing only on the metrics, manLastSkip and manLastPlay
both rank higher than the distances between the average vec-
tors. From this result, we can assume that the type of song
a user skipped or played immediately before is more relevant
than the type of songs they have skipped or played on aver-
age throughout their session. It is possible that because the
average vectors represent every song that has been skipped or
played in a session, as a user’s session grows, these vectors
will become more obscure and less relevant.

Finally, as shown in Figure 8, the engineered features greatly
outperform those relating to Spotify metadata. As stated be-
fore, this group of features was not expected to do so poorly.
Though, this outcome may be attributed to the lack of diver-
sity of dates in the data used. It is interesting to note that
the order of feature importance of the engineered features re-
mained consistent between when they were used in isolation
vs alongside metadata, reinforcing the fact that the metadata
was barely influential.
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Figure 7: The most important features in a model trained on only
our engineered features (Metrics, and Contextual data).
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Figure 8: The top 10 most important features (no Track Features)
used in the final model. Features not shown ranked ≤ .0001

6 Future Work

Our goal is that this model could eventually be used not only
to make a prediction but to choose songs from the playlist a
user is listening to that they are least likely to skip. As the
session progresses, and more songs are listened to, the model
will have access to more information and be able to make bet-
ter predictions in real-time. A simple way to accomplish this
would be to classify every song yet to be played and use the
model’s confidence to rank which songs it is most certain will
not be skipped. This, however, would have linear complexity
as the size of a playlist grows. Instead, a random sample of
songs from the playlist may be picked and ranked in order to
keep up with the speed at which a user can skip songs.

Alternatively, a more complex model using a recurrent neu-
ral network similar to the solution of Hansen et al. [8] could

be trained to compare the accuracy between artificial intel-
ligence techniques. Our belief is that prediction accuracy
might increase with an RNN, but our initial use of decision
trees allowed for influential features to be identified and bet-
ter understood.

If data was available containing more than one session for
a user, habits could be learned over time to better anticipate
the user’s moods. Listening preferences of a user by time of
day, day of the week, or even month could be learned. With
this information, the system could adjust its choice of queued
songs at the beginning of each session. So, if a user typically
listens to slow and sad music on weekdays after 6:00 PM,
when they shuffle their playlist at this time, the first songs
that play are more likely to be slow and sad.

A challenge of this feature would be the balance between true
randomization and tailored randomization. The learning as-
pect must be subtle enough to not negatively impact the user’s
experience. It is important to avoid locking the system into
playing a specific genre of music at a particular time, as this
would detract from the intended variety offered by a shuf-
fle algorithm. To achieve seamless and virtually unnoticeable
customization, it is crucial to find the proper balance between
tailored and random songs.

7 Conclusion

In this paper, we have explored our research question of
whether we can utilize session data to accurately predict
whether or not a user will skip a particular song. We hy-
pothesized that user “skipping” behavior could influence the
overall pattern within a session and that users would be more
likely to listen to similar songs within a session according to
their mood. We have shown that it is indeed possible for a
model to make these predictions accurately, though the most
influential information was not necessarily as we hypothe-
sized. When predicting whether a user will skip a song, the
frequency of skipping and recent skipping behavior are more
influential factors than the similarity of the song to previ-
ously skipped songs in our current model. In future work, we
will explore whether we can more accurately predict whether
a user will play a song by utilizing different metrics and
strategies. However, our final model described here attained
78.23% accuracy and shows that user behavior can be lever-
aged to predict whether or not a song will be skipped in a
given session. In the future, this model could be utilized to
adapt queued songs according to the user’s behavior and cur-
rent preferences, resulting in fewer skips overall and an im-
proved user experience.
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ABSTRACT 
 

An introductory course in creative graphical coding for 

both computer science and digital art majors need not be 

watered down. The availability of an excellent Java-based 

framework including an IDE, debugger, and high-level 

class and function library avoids potentially problematic 

mathematics and device-control demands by encapsulating 

them within the library. Students can add or modify a few 

lines of code and then run them from the IDE without 

explicit compilation steps or tool changes, immediately 

seeing the results of initial coding or bug fixes in the form 

of animated graphical objects. Incremental introduction of 

object-oriented mechanisms within the course such as 

reuse, function and class encapsulation, interface and 

implementation inheritance, and polymorphism, go hand-

in-hand with incremental addition of features to an initially 

simple in-line program. Course enrollments are high, 

students succeed, and the opportunities for creative work 

are open ended. 
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1.  Introduction 
 

“Hybrids that can fluidly cross the chasm between 

technology and the arts are mutations in the academic 

system. Traditionally, universities create technology 

students or art students – but never mix the two sides of the 

equation in the same person. During the 1990s, the mutants 

that managed to defy this norm would either seek me out, 

or else I would reach out to find them myself. Bringing 

these unique people together was my primary passion, and 

that’s how I came into contact with Casey Reas and Ben 

Fry.” (Forward to Reference [1] by John Maeda, currently 

VP of Design and Artificial Intelligence at Microsoft.) 

 

This experience paper grows out of 13 years of teaching 

interactive computer graphical design and creative 

multimedia programming to undergraduate students. The 

first 5 years consisted of teaching Photoshop and Illustrator 

composition in a general education course and teaching 

object-oriented Java programming to computer science and 

mathematics majors. In 2014 the author migrated the raster 

and vector graphics editing courses to two new creative 

coding classes using the Processing framework and media 

libraries [1-3], coded in Java. CSC120 Introduction to 

Creative Graphical Coding first ran in fall 2015. CSC220 

Object Oriented Multimedia Programming followed in 

spring 2016. One to three sections of these courses have 

run during alternate semesters since then, attracting 

computer science and mathematics majors, and non-majors 

to the 100-level course. 

 

In 2015 our College of Visual and Performing Arts formed 

a team including the author to plan for a new BFA in 

Applied Digital Arts (APD). By the spring 2018, third-

semester APD students comprised about 80% of two 

sections of CSC120, a core course in their major, with 

many going on to CSC220 as a major elective in two of 

their specialization tracks. Many of these students had 

never anticipated programming. The sections that follow 

summarize both how object-oriented structures eased their 

transition into the world of coding, and pedagogy for 

accommodating non-traditional programming students. 

 

2.  Creative Graphical & Multimedia Coding  
 

2.1 CSC120 Introduction to Creative Graphical 

Coding 
 

Each student advances their own custom avatar through 

developmental stages in structure and behavior throughout 

the semester. The textbook’s Zoog animated character 

serves as a template for this development [2], to be 

customized and extended by each student into a unique 

avatar. By semester’s end we have used object-oriented 

mechanisms to make creation of an interacting society of 

avatars possible. The following subsections outline avatar 

developmental stages. 

 

2.1.1 Project 1: In-line Visual Code 
 

Figure 1 on the next page shows two display captures of a 

Project 1 mobile avatar, the Professor, in front of a campus 

building, moving among lampposts and trees. These are 

two virtual photographs from the running handout code 

that students must modify to create their own custom 

mobile avatars and stationary settings. For many art 

students who have never programmed before, the task of 

customization is at first daunting. Aspects of these images 

worth consideration follow. 

 



• Students must use shape-displaying library functions 

such as line(), ellipse(), rect(), arc(), quad(), stroke() 

and fill() (for color), strokeWeight() (for stroke 

thickness), and two-dimensional display coordinates 

for placement. 

• The Processing run-time framework invokes the 

custom draw() function at the framerate, typically 30 

or 60 frames per second, to achieve smooth animation. 

By changing location coordinates within each call to 

draw(), the programmer moves objects at a smooth 

rate. 

• The colors of the background and trees in Figure 1 

vary from dark and floodlit-red in the top frame to 

daylit and green in the bottom frame. The author 

teaches parameters such as color as locations in an 

abstract space, in this case a color space, similar to the 

2D x,y locations of placement of graphical primitives. 

• Placing the avatar behind a lamppost in the bottom 

frame requires plotting the avatar’s body parts before 

plotting the intervening lamppost within the code. 

There is no third, Z dimension in 2D graphics. Objects 

plotted later appear in front of objects plotted earlier at 

overlapping locations. 

 

 
 

Figure 1: Snapshots of the Handout Code’s Animation 

 

This so-called sketch (Processing’s term for a program) 

contains 4 global state variables used and updated within 

the periodic draw() function. 

 

• int backgroundColor = 0 ; // cycle through grayscale 

• int avatarX = 0 ; // Move avatar left-right-left in cycles. 

• int rangeX = 0 ; // X from 0 to 2*width-1 for update 

• int legX = 0 ; // Distance leg from X center [-10,10]. 

 

The author describes such a 2D scenario as a stage on 

which players move among the set and can disappear off-

stage. This avatar moves behind the trees at the left and 

right. 

 

Figure 2 shows a much more elaborate CSC120 Project 1 

created by a music major with graphical design experience 

in the Blender design environment [4] but with no previous 

Processing or Java programming. The car bounces 

realistically and throws a shadow as it moves below the 

lamp, and the sun rises and sets in the background with the 

sky darkness tracking night and day. 

 

 
 

Figure 2: A Student Mobile Avatar 

 

Most initial student projects are much simpler than that of 

Figure 2. Most students are just starting to program. 

Projects do not strive for mathematical precision. Instead, 

the author encourages students to prototype placement of 

background objects and body parts, and to nudge them into 

place when they are slightly off. Students get visual 

feedback immediately when changing and running code. 

Even though the programming language is Java, the 

Processing Integrated Development Environment (IDE) 

hides the compilation step and highlights compile-time 

errors and warnings in the editor. Figure 3 shows the IDE 

highlighting a misspelled function name interactively. 

Misspelled variables, syntax errors, and most other 

compile-time problems are highlighted by behind-the-

scenes source code analysis. Most run-time errors that 

crash a program highlight the offending line of code. 

 

The most difficult bugs are those that move entire graphical 

objects off screen. Even scaling the entire display down so 

objects that are off-screen may appear on-screen does not 

always find them. In practice, no students seems to get into 

the disappearing object problem more than once per 

student. 

 



One requirement imposed by the instructor that does not 

appear until late in the textbook [2] is that students must 

surround any mobile or complex graphical object display 

code such as the car with an opening pushMatrix() call, 

followed by translate(X,Y) to a x,y reference point within 

the object, and a closing popMatrix() call at the end. This 

translate(X,Y) call moves the 0,0 reference point of the 2D 

coordinate system from the upper left of the display to the 

conceptual center of the object. Once that center reference 

point is in place, the x,y locations of body parts are relative 

to that reference point, not relative to a global location. A 

body part can then be placed relative to the local 0,0. 

Furthermore, pushMatrix(), translate(), plotting, and 

popMatrix() calls can be nested so that a complicated body 

part can be placed relative to its center rather than to the 

reference point of the entire body. This coordinate locality 

of reference introduces students to the idea of a stack of 

reference points. Furthermore, any call to the 2D rotate() 

function centers around the innermost reference point, and 

scale() affects nested translate(X,Y) and object placement 

scaling. Nested translate(), rotate(), and scale() changes are 

discarded by a subsequent popMatrix() call. Recent 

versions of Processing have combined pushMatrix() and 

pushStyle() into a push() library function paired with a 

composite pop() function. The pushStyle() / popStyle() pair 

save and restore incoming color and other non-coordinate 

visual aspects similar to pushMatrix() / popMatrix() for 

coordinates. The next paragraphs give an example use of 

these functions. In class the instructor demonstrates these 

ideas by physically translating himself around the room 

and nested-translating displayed objects held in his hands. 

 

The code of Figure 3 creates the display window of Figure 

4. The framework-specified setup() function sets the size 

of the display window in pixels (width, height), the frame 

rate (frequency of periodic calls to draw() in times-per-

second), and the color mode, in this case Hue-Saturation-

Brightness (HSB). Argument 360 defines a color wheel 

(hue) that varies from 0 (red) through 360 (red) as 

illustrated in Figure 5. Color Saturation and Brightness 

range from 0% to 100%. The author came to learn that HSB 

with saturation and brightness of 100% was the most 

effective way to use the relatively low-saturation university 

planetarium projector, when an art student demonstrated 

that on the dome during a CSC120 group capstone project 

session. 

 

The draw() function of Figure 3 runs periodically at the 

frame rate, 30 frames per second as configured in setup(), 

illustrating the library functions used to create Figure 4. 

Code comments complement this discussion. At draw() 

entry, coordinate 0,0 is at the left, upper corner of the 

display as is typical for graphics libraries. 

 

 
 

Figure 3: Processing’s IDE 

 

 
 

Figure 4: Display Generated by Figure 3’s Code 

 



 
 

Figure 5: The IDE’s Color Selector Tool 

 

After setting the background to white (0% saturation – 

ignoring the hue –  with 100% brightness), draw()’s first 

pushMatrix() call saves the incoming coordinate system. 

Translating to the halfway locations of the predefined 

system variables width and height (of the display) moves 

the 0,0 reference point to the display center. After drawing 

an ellipse with a width of 100 pixels and a height of 150 at 

the center (i.e., translate-relative location 0,0), draw() 

enters a for-loop iterating from 0 through 270 degrees in 90 

degree steps in variable outer. At each step the loop starts 

with pushMatrix(), saving the loop-incoming 0,0 point at 

the display center. It then rotates the entire display an 

increment of 90 degrees, converted to radians. It draws a 

line from the 0,0 center point to the x=200,y=0 point 

relative to the preceding rotation. Figure 4 shows 4 lines 

radiating from the center due to this line() call at source 

code line 15. Next, translate(200, 0) moves the 0,0 

reference point out to the end of that line. Calling scale(0.5) 

reduces the size of the ellipse at line 19 and the length of 

the lines at line 22 by half, even though they use the same 

sizes and coordinates used in lines 11 and 15. The visual 

universe has been scaled down. At line 18 fill(outer, 100, 
100) uses the angle of global rotation to set the hue, with 

saturation and brightness of 100%. At line 20 rotate() 

applies the built-in constant of QUARTER_PI radians to 

offset upcoming lines by 45 degrees, and the inner loop 

draws 4 lines, each rotated from its predecessor by 90 

degrees. Figure 4 shows the results. The HALF_PI 

rotations accumulate because there is no surrounding 

push()-pop() pair to undo them. Students can use the 

radians() function to convert degrees, or they can use 

radian constants and variables. The outer loop ends with a 

popMatrix() call that discards the translations, rotations, 

and scales that follow its partner pushMatrix() at the top of 

the loop, and the final popMatrix() re-establishes the global 

coordinate system coming into draw(). Processing has done 

a good job of modernizing the body-relative use of 

coordinates inherited from the LISP-derived Logo 

programming language [5,6] that, like Processing, 

originated in the MIT Media Lab. 

 

2.1.2 Project 2: Behavior as Functions 
 

Assignment 2 adds requirements for loops and creation of 

at least one function for the avatar called from draw() at the 

framerate. As usual, the author hands out example code 

along with the assignment specification that students must 

understand. 

 

// THE display() FUNCTION DISPLAYS AN AVATAR 

// BASED SOLELY ON ITS PARAMETER VALUES. 

// DO NOT USE GLOBAL VARIABLES IN display(). 

// STEP 1: Write your version of this function: 

void display(int avx, int avy, float avscale, int avwiggle) { 

  // avy is this avatar's x location; avy is its y location; 

  // avscale is its scaling factor; avwiggle wiggles parts. 

  // Move avatar push, translate, scale, and pop code here, 

  // but keep the avatar move code up in draw(). 

  // USE GEOMETRIC TRANSFORMS TO POSITION 

  // THE AVATAR 

  // All avatar-specific coordinates are relative to the 

  // translated center of the avatar. 

 

Here are the in-code instructions for writing a loop. 

 

// I SATISFIED STEPS 5 (more avatars) & 7 (a loop) 

// IN THIS LOOP.  

// YOU CAN USE A LOOP TO DRAW SOMETHING 

// OTHER THAN AN AVATAR, E.G., SOME PART OF 

// SCENERY. I USED IT TO DRAW AVATARS. YOU 

// MUST DRAW AT LEAST A SECOND AVATAR FOR 

// STEP 5, BUT THE AVATAR DOES NOT HAVE TO 

//  BE PART OF THE LOOP. 

for (int clonex = width/4 ; clonex < width  

; clonex += width/2) { 

// start at width/4; adding width/2 comes back into the 

// loop only a second time. 

    display(clonex, height/8, 0.5, 16*legX); 

} 

 

 
 

Figure 6: A Function Stamps Out Multiple Avatars 

 

Students add a function definition and multiple invocations 

to stamp out multiple avatars. The author’s handout 

implementation added only one more global variable for 



limb movement speed. Other than that, the placement of 

the two additional avatars appearing in Figure 6 are at fixed 

locations with no mobility. The Professor avatars in Figure 

6 wave their long arms but otherwise are immobile. It 

would be straightforward to add mobile avatars that move 

only in parallel with the original avatar without adding new 

location state variables. Their respective reference points 

would be at fixed offsets from the original, reference 

avatar. 

 

2.1.3 Projects 3-4: Behavior + State as Classes 
 

Project 3 creates a class from Project 2 global state 

variables, function display(), and the state update logic in 

draw() into a new move() function. Handout class 

Professor contains these state variables, move() display(), 

and a constructor that sets initial location, speed, and scale. 

Replacing the global state variables is an array of 

Professors. Project 3 introduces this array of objects and 

expands the use of loops to iterate over it for calls to the 

constructor using pseudo-random locations and an 

assortment of scaling factors as arguments. Construction 

occurs in Processing’s setup() function, and a loop within 

draw() invokes display() and move() on each Professor 

object. Students must replace Professor with their own 

classes as extensions of appearance and behavior coded in 

Project 2. Example animated display is much like Figure 6, 

but now avatars can move independently from each other.  

 

Project 4 introduces a Java interface and abstract class that 

initiate students into object-oriented design and 

implementation. Interface Avatar, supplied by the 

instructor, specifies the following class functions. 

 

• display() is identical to Project 3, using state fields 

within each object to project graphics. 

• move() is identical to Project 3, updating state 

variables such as location and speed. 

• getX() and getY() return Avatar coordinates. 

• shuffle() and forceshuffle() specify optional and 

mandatory random changes in location, triggered by 

keyboard commands, for jumping out of dead ends. 

• getBoundingBox() returns the 4-tuple of upper left, 

lower right x,y coordinates of a 2D box enclosing the 

Avatar object. 

 

Abstract class AvatarHelper, also supplied by the 

instructor, houses state variable fields common to all 

Avatar objects such as x,y location and speeds. This helper 

class also provides a collision detection and recovery 

function definition, to be used at the bottom of each 

concrete Avatar class move() function. Collision detection 

uses objects’ getBoundingBox() function calls to detect 

overlapping Avatar objects. 

 

In the handout code, concrete class Professor derives from 

AvatarHelper and implements the specifics of 

Professor.display() and Professor.move(). Display and 

movement logic are the same as in Project 3. Figure 7 

shows the inheritance hierarchy of Project 4 handout code. 

Data fields and functions in bold are defined by 

Processing, with setup() and draw() written by the coder. 

 

Project 4 uses an array of abstract Avatar object references 

that can house multiple Professor objects with independent 

location and speed state variables. There are 50 Professor 

objects in Figure 8. The transition from a behavioral 

display() function in Project 2 to a class that encapsulates 

each avatar’s state in object fields and behavior in display() 

and move() functions is an incremental transition. The ease 

with which 50 Avatar objects can be constructed within a 

loop and stored in a polymorphic Avatar array is 

impressive to students. 

 

Figures 7 and 8 also show immobile Furniture objects – 

the magenta line barriers – and a rotating yellow Paddle 

object in the center that also derive from interface Avatar 

and abstract class AvatarHelper, with their objects residing 

in the polymorphic Avatar array. All of these objects 

interact via collision detection and recovery in 

AvatarHelper, called at the bottom of the move() functions, 

with collision detection calling individual objects’ 

getBoundingBox() function. Figure 8 shows the 

rectangular bounding box around each avatar, displayed 

during debugging of getBoundingBox() and collision 

detection / recovery. 

 

 
 

Figure 7: Project 4 Inheritance Hierarchy 

 



Students must replace the Professor class with their own 

class, using display() and move() logic from Project 3 

along with enhancements. They must also make 

enhancements to the Furniture and Paddle class appearance 

and behavior. 

 

 
 

Figure 8 : Array of Avatars of Varying Classes. 

 

Within the scope of four projects, novice programmers are 

exposed to the practical utility the following object-

oriented concepts and mechanisms. Each project builds 

upon the prior, presents opportunities and requirements for 

student customization, and provides immediate feedback in 

terms of visual presentation. 

 

• Code reuse is a key object-oriented concept. 

Processing supports library reuse through its graphical 

functions and classes. 

• An interface specifies functions provided by 

subclasses. 

• An abstract class provides data fields (variables) and 

functions (a.k.a. methods) that can be used by 

subclasses. You cannot construct an object of an 

abstract class. It is a helper class. 

• Concrete classes are classes from which you can 

construct objects that model state in data fields 

(variables), and activities in functions. 

• Polymorphism (many forms) means that subclasses of 

interfaces and base classes can take many forms, such 

as these concrete classes. Our use of an array of Avatar 

objects from varying classes illustrates polymorphism. 

 

2.1.4 Project 5: A Group Project Capstone 

 
Project 5 builds on the object-oriented infrastructure 

introduced in Projects 3 and 4 without adding new 

concepts. The primary addition is the coexistence of many 

student Avatars acting as paintbrushes. The draw() 

function does not erase previous frames via the 

background() library function. The author took student 

login ID strings, generated empty Avatar-derived class 

declarations named after those strings, and each student 

supplied custom display() and move() code for their Avatar 

paintbrush. The author also generated keyboard command 

interpretation for adding and removing student mobile 

paintbrushes. Figure 9 shows photos of three stages of 

student paintings on the university’s planetarium dome 

during the interactive project demonstration. The 

polymorphism of the array of Avatar objects housing 

student Avatar concrete objects made this integration of 

student paintbrushes possible. 

 

 
 

Figure 9: Student Avatar-Interface-Derived Objects 

 



 

2.2 CSC220 Object Oriented Multimedia 

Programming 
 

The object-oriented mechanisms and student coding efforts 

introduced in previous course projects open doors for 

extension and reimagination driven by student creativity 

and additional Processing library support. Figure 10 

illustrates just two of the projects we have tackled in 

CSC220, the second-level course, namely 3D Avatar 

environments and photo-derived avatars. 

 

Multimedia projects introduced in CSC220 include music 

and sound. Java supplies interfaces and classes for reading 

and writing packet-like MIDI (Musical Instrument Digital 

Interface) messages [7,8]. The Java library includes basic 

software-synthesized instruments and audio effects such as 

stereo balance, chorus, and reverb. Students extend MIDI-

generating sketches through play & listen interaction with 

the MIDI instruments and effects. 

 

 
 

Figure 10: 3D Avatars and Photographic Avatars 

 

The Android operating system for tablets and cell phones 
can run Processing code via cross-compilation from a 

laptop or PC [9]. There are a few added library functions 

and considerations of display size and aspect ratio. The 

author and students have connected Android client 

Processing sketches to Processing display servers via 

wireless networking [10]. Figure 11 shows a 3D, server-

side Processing projection designed for our planetarium 

dome controlled by leaner 2D, client-side graphical remote 

controls of Figure 12 on laptops and Android tablets. 

 

 
 

Figure 11: 3D Server Visual Music Projection 

 

 
 

Figure 12: 2D Client Controller on a Laptop or Tablet 

 

Recursion is another CSC220 topic. Figure 13 shows 4 

screenshots of an interactive recursive program that 

includes user key commands for changing depth of 

recursion, animating rotation of shapes, and navigating the 

camera point-of-view through the 3D space. Figure 13 

shows the display of the handout code. Students must 

customize the space-filling base shapes and add commands 

for the expansion and contraction of the lattice and the base 

shapes. Other recursive projects model plants and 

architectural structures. 

 

The final CSC220 project for fall 2022 consisted of an 

interactive visual instrument. The approach is an 

improvisational video instrument coded by the instructor, 

and extended by each student who then conceived, 

practiced and performed a novel piece for exhibition using 



their own photographs. Fifteen students have granted 

permission to have their work appear in the video [11]. The 

video piece is running in the university library throughout 

the spring 2023 semester. Figures 14 and 15 show two 

screen captures from the 34-minute video. 

 

 
 

Figure 13: Stages of Interactive, Animated Recursion 

 

 
 

Figure 14: Screen Capture from Fall 2022 CSC220 

 

 
 

Figure 15: Screen Capture from Fall 2022 CSC220 

 

 

3. CSC120 and CSC220 Pedagogy 
 

The author uses an approach adapted from 20 years as an 

industrial software developer, the last 10 of them as a lead 

system architect. The approach is to treat students as junior 

engineers and to supply a substantial project framework for 

most assignments that require students to read and 

understand code. Feedback from alumni confirm that this 

is what they spend much of their professional lives doing. 

In the projects listed above, the author supplied the 

Professor class, the Avatar interface and AvatarHelper 

abstract base class, and other framework code cited. 

Supplying substantial code teaches students how to read 

and understand code and supports ambitious projects. 

 

Students customize projects in ways immediately clear 

when running their sketches. Not only does the primary 

requirement for custom work encourage creative thinking 

and exploration of Processing library capabilities, it also 

makes it possible to hand out one solution for a problem as 

the starting point. Cheating is much less possible, and late 

assignments due to illness or other legitimate reasons are 

not a problem because the instructor never hands out “the 

solution”. There are N + 1 solutions for N students plus the 

instructor. 

 

In stages of CSC120 instruction the instructor and students 

copy and paste code from the on-line textbook examples 

[2] into the Processing IDE instead of teaching from slides. 

We experiment with modifying and discussing those 

sketches. Class time consists largely of interacting with 

code and its animated execution. 

 

In 2013 through 2015 the instructor and two student 

collaborators data mined the correlation of programming 

behavior to project grades for Java programming students 

[12,13], done with permission of those students. The 

following are the primary takeaways applied in CSC120 

and CSC220. 

 

• Start two weeks before the project deadline. 

Additional time is usually wasted. Two weeks give 

students time to determine whether the project is 

within easy reach or requires effort immediately. For 

most projects students can skip working for half of 

these days, but the two-week start is essential. The 

author has solved this problem by having an in-class 

work session at the next class after an assignment is 

handed out, to give students time to read and formulate 

questions. Students requested such sessions the first 

time the author skipped one. Both this practice and the 

copying and pasting of on-line textbook code 

examples mandate a lab classroom. The author also 

schedules an office hour immediately after class, when 

possible, to continue working with students having 

problems. 

• Working fewer than 60 minutes per coding session 

does not correlate well with good project grades, 

presumably because the cognitive system does not 



have time to fully engage. The author insists on a 

minimum of 80-minute classes. 

• No more than 20% of work should occur at night. This 

one is impossible to enforce, but the author discusses 

it with students. 

 

The immediate sensory feedback of a working or broken 

code change seen by running the sketch from the IDE is 

extremely valuable in tying student programming to 

sensory awareness. There is a positive affective dimension 

to seeing lively animations when compared to more 

conventional textual output from programs. 

 

4.  Conclusions 
 

Our department’s major CS I and II courses do not 

introduce classes until CS II and substantive inheritance 

until later. It is possible to introduce the object-oriented 

mechanisms of Figure 7 into a late-semester CSC120 

project because these mechanisms relate so closely to what 

students need to do to get multiple avatars running around 

among obstacles on the screen. Development is 

incremental starting with the Project 1, so there are no large 

conceptual leaps. The instructor always hands out working 

code as a starting point, so there is code to inspect as 

questions arise. Digital art students who expressed 

concerns when entering CSC120 have done well, and many 

have gone on to take CSC220 and concentrate in one of the 

tracks for which it is a major elective. Enrollments are high, 

students succeed, and the opportunities for creative work 

are open ended. 
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ABSTRACT
The purpose of this research is to compare multivariate
time series forecasting algorithms in order to provide
insight on the most efficient algorithms when predicting
outcomes. Datasets involving weather and stock
information are evaluated through the use of the Vector
AutoRegression (VAR), Long Short-Term Memory
(LSTM) neural networks, and Facebook Prophet
algorithms. Python and the R Programming Language are
utilized to perform the algorithms and produce
meaningful forecasts. The models are assessed through
similarity, identification of correlation, and visualization
performance as demonstrated with the Root Mean
Squared Error (RMSE). This project is different from
other related works that were researched because of their
focus on univariate time series algorithms, or the use of
said algorithms. Data cleaning is used to handle missing
data, erroneous values, and outliers. The results show
that Facebook Prophet outperforms VAR and LSTM
neural networks for datasets of all sizes, and that LSTM
neural networks perform better than VAR for larger
datasets, while VAR performs better than LSTM neural
networks for smaller datasets.

KEYWORDS
Vector AutoRegression, LSTM networks, Facebook
Prophet.

1. Introduction

Time series analysis can be defined as a way of analyzing
a continuance of data points that were accumulated over
a period of time. Since a time series involves
time-dependent variables, the analysis allows for the
influential factors on those variables to become known.
Univariate time series forecasting models are good for
predicting outcomes for a single variable. However,
multivariate time series forecasting analysis is more
challenging, and predicts future values through
identifying patterns with the multiple variables at hand.
A multivariate time series has multiple time-dependent
variables with each variable not only depending on the
past values, but also on other variables within the dataset.
This dependency is then used to forecast future values.

One of the most popular methods for multivariate time
series forecasting is Vector AutoRegression (VAR). This
method is defined as a way to assimilate the relationship
between multiple variables as they transform over time.
It allows for multivariate time series activity through the
generalization of the single-variable autoregressive
model. Another method that is widely used is called the
Long Short-Term Memory (LSTM for short) networks.
This model is an advanced recurrent neural network
(RNN) that reduces the long-term dependency issues
within the dataset. As the patterns within the data are
separated by longer periods of time, LSTM becomes
more and more useful. Also, Facebook Prophet is a
multiple time series forecasting algorithm tool that
estimates seasonality that has either linear or non-linear
growth. The product of these algorithms result in
multivariate time series conclusions that demonstrate
predictive information valuable for businesses and
research.

Depending on the desired forecasting outcomes, each
algorithm is handled differently and provides different
results. When comparing the models of multivariate time
series algorithms, it is important to be aware of the types
of errors, identification of correlation, and visual
performance. In order to determine the best algorithm,
the forecasting measures and procedures are classified
through the use of analytical programming, resulting in
optimal predictions. Multivariate time series algorithms
can be evaluated and compared to figure out the best way
to provide efficient forecasted results.

The purpose of this study is to compare a few different
multivariate time series algorithms with different types of
data by comparing the results of the forecast with the
actual test results found in the original dataset. The
specific metric chosen is the Root Means Squared Error
(RMSE), due to its ease of readability. Each algorithm is
graded based on their performance against each other in
predicting the most accurate results for each dependent
variable in the datasets. This is presented on a scale of
1-3, with 1 being the least accurate, and 3 being the most
accurate of the algorithms using the RMSE measurement.
This study will serve as a guide for what time series
algorithm is best suited for analysts performing
multivariate forecasting on their data.
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Previous studies have put a focus either on comparative
studies of univariate time series algorithms, an in-depth
study of a single multivariate time series algorithm, or a
comparative study comparing some univariate methods
with a multivariate method. Studies testing the
performances of differing multivariate methods are
sparse. This study aims to fill in that gap in the current
literature of multivariate time series forecasting.

The remainder of this paper is structured as follows:
Section 2 discusses the related works, Section 3 presents
the methodology used, Section 4 demonstrates the results
of the study, Section 5 concludes the study, Section 6
offers suggestions for future studies, and Section 7 shows
all the supplementary material.

2. Related Works

2.1 Univariate Forecasting

Phan [1] examined six methods for forecasting univariate
meteorological data. These included: Simple Exponential
Smoothing (SES), Seasonal-naive (Snaive),
Seasonal-ARIMA (SARIMA), Bayesian Structural Time
Series (BSTS), Imputation of Time Series Based on
Dynamic Time Warping Functions (DTWBI), and
Feed-Forward neural network (FFNN). In particular,
Phan was largely concerned with comparing performance
between linear and neural network models, as linear
models may predict general trends, but fail to determine
nonlinear features or those which exhibit quick change.
All but one of the methods above are standard options, in
regards to forecasting. DTWBI, however, was previously
regarded as an NN-type classification algorithm. It was
selected for testing due to its ability to capture the shape
of dynamic data. With the six methods, experiments were
conducted to determine which method best performs
forecasting for specific cases and parameters. In
assessment of model performance, it is essential to
consider both the ability to accurately predict response
variables and to model the shape of dynamic trends and
seasonality. For univariate meteorological forecasting,
Phan finds that FFNN produces the most accurate
forecasting values, while DTWBI produces the best
shape and dynamics.

Katsuri [2] conducted a study to determine an optimal
method of prediction for Crude Palm Oil (CPO) price.
The price of CPO is non-linear, non-stationary, and
dynamic. Thus it is difficult to predict these values with
standard linear techniques. Some linear-centric methods,
like Box-Jenkin’s Autoregressive Moving Average
(ARMA), produce short-term predictions yet falter when
forecasting long-run time series data. “Traditional
shallow” neural networks are not suited for the
non-linear, nonparametric, noisy, dynamic, complex, and
chaotic nature of many real-world time series. Given
these concerns, Katsuri compared three models: Artificial

Neural Network (ANN), Long Short Term Memory
(LSTM), and the Holt-Winter model. ANN is described
as the most efficient NN approach, while Holt-Winter
exists as a statistical smoothing method. LSTM,
however, includes procedures for long-term learning as
well as for efficiency, such as the incorporation of a
‘forget’ gate, to remove non-necessary information.
Consequently, upon implementation, LSTM produced a
Root Mean Square Error which is 48.45 less than
Holt-Winter’s and 75.44 less than ANN. With this,
Katsura found that LSTM dramatically outperforms the
ANN and Holt-Winter models, when predicting CPO
price.

2.2 Multivariate Forecasting

Muzaffar [3] performed a study to compare the ability of
algorithms to forecast load, given some meteorological
data. As the expanse and complexity of power stations
has increased, the difficulty in accurately predicting
energy needs, given extreme weather phenomena, has
increased as well. In response, the study is conducted by
making comparisons between the increasingly popular,
NN-type LSTM method and traditional forecasting
methods, such as Autoregressive Moving Average
(ARMA), Autoregressive Moving Integrated Average
(ARIMA), and Autoregressive Moving Integrated
Average with Explanatory Variables (ARIMAX). Given
the context of the subject data, predictions are produced
for timelines of 24 hours, 48 hours, 7 days, and 30 days.
The study finds that LSTM outperforms the traditional
methods in general and for short-term especially.
Importantly, the LSTM model is capable of
accommodating the addition of many significant
variables, to improve prediction.

Jammalamadaka [4] developed a Multivariate Bayesian
Time Series (MBSTS) model which utilizes online text
mining to predict stock prices. The model was the first of
its kind and suggested that there was more to discover
about machine learning, data mining, and forecasting
complex phenomena, such as stock prices. In particular,
the model incorporated sentimental predictors, which are
found to substantially contribute to the accuracy of
predictions. The sentimental predictor, in the final
iteration, classifies big company-focused news articles as
having some polarity: positive, negative, or neutral. In
earlier iterations, a sentimental predictor was used to
classify social media posts, about tech giant companies,
as having some emotion along the lines of: anxiety,
calmness, dislike, fear, liking, love, joy, sadness, and
unknown. While the polarity indicator was found to
improve prediction, the emotion indicator was
determined insignificant and omitted from future
iterations. Further, the study evaluated the ability of
sentimental indicators and compared the accuracy of
MBSTS to other time series algorithms. Jammalamadaka
tested Autoregressive Integrated Moving Average
(ARIMA), Long Short-Term Memory (LSTM), and



MBSTS. For each algorithm, three models were
constructed. These included models with sentimental
predictors, without sentimental predictors, and with no
predictors. The study concluded with two primary
findings. First, those models with sentimental predictors
outperformed the other models of its kind (no sentimental
predictors and no predictors), across all algorithms.
Second, the sentimental predictor-incorporated MBSTS
model achieved the most accurate predictions.

2.3 Comparative Procedures and Measures

Iwok [5] compared the performance of univariate and
multivariate time series, using five time series variables
for Nigeria’s gross domestic products. The study raises
the pertinent question of whether multivariate time series
outperforms its univariate counterpart. With
advancements in machine learning and data mining,
univariate forecasting seems limited, in comparison to
that which is multivariate. Especially in regards to time
series forecasting, univariate methods tend to fail in
supplying information about interrelationships of
variables. Multivariate methods primarily excel at
utilizing information about interrelationships to optimize
data processes such as classification, clustering, and
forecasting. With this, it is fairly easy to assume that
more is better. However, to test this common assumption,
Iwok develops a univariate ARIMA model and
multivariate VAR model. Model performance is
determined by comparing, for each of the five time series
variables, the Mean Square Error (MSE), Mean Absolute
Error (MAE), and Mean Absolute Percentage Error
(MAPE). Across every variable’s statistics, the univariate
ARIMA procedure indicates superiority. Hence, it is
concluded that, for this context, the univariate model is
the best. The finding draws pertinent attention to the
common oversight of “simpler” methods. From this,
Iwok concludes by recommending that comparative
analysis be conducted to determine which method,
univariate or multivariate, is best at predicting, given
particular data and concerns.

In contrast, all previously mentioned studies perform
model comparisons between models with the same
number of response and explanatory variables. Rather,
these other studies largely draw comparisons between
statistical and neural network models. Phan [1] decidedly
conducts the most thorough comparison, with six
different tested algorithms. Additionally, four
performance indicators are used for evaluation. These are
similarity, Normalized Mean Absolute Error (NMAE),
Root Mean Square Error (RMSE), and Fractional Bias
(FB). And performance is compared across time series
with various degrees of seasonality and trend. The study
provides a structure for comparison of time series
algorithms, as well as impressive results regarding the
performance of DTWBI.

The remaining majority, [2], [3], [5], compare
performance between three to four different algorithms.
Jammalamadaka [4] is a slight exception to this, as
additional iterations of models are constructed to
determine pertinence of sentimental predictors.
Additionally, these only consider mean error statistics,
for performance evaluation.

2.4 Using Algorithms for Data Cleaning

Patil [7] discusses different data cleaning algorithms for
data warehouse systems. Due to the demand for precise
information regarding data collection and processing,
data cleaning is an important step when analyzing data
because it can increase the quality of the data while
reducing the efforts in collecting it. Methods such as
deduplication, substantiation, and house holding are
explained to provide insight when dealing with data
cleaning within data warehouse systems. A data cleaning
algorithm detects inaccurate data and then corrects the
errors and commissions through steps like checks,
reviews, assessment, and validation of the data. This
paper also examines the phases of data cleaning: data
analysis, defining the transformation workflow and
mapping rules, verification, transformation, and backflow
of cleaned data. Data cleaning thus improves the quality
of the data by reducing the inconsistency and assists the
users or experts with standardizing the data.

In the next research paper, J.M.Z.H [8] discusses the
topic of data cleaning using a machine learning paradigm
for big data analytics. A big challenge in big data
analytics is detecting and repairing dirty data and if this
challenge is not met, there can be inaccurate data
remaining which can cause unpredictable conclusions.
The survey paper dives into data quality troubles,
different cleaning tools available, and the challenges that
arise when cleaning big data. A comparison of
commercialized data quality management tools shows the
vendor, data cleaning product, website to obtain this
product, and the likes and dislikes of this product from a
compilation of survey results from customers. Some of
these data cleaning tools that were compared are
Infosphere QualityStage from IBM, Oracle Enterprise
Data Quality from Oracle, Data Management from SAS,
and SAP Data Services from SAP. It was concluded that
machine learning algorithms could replace data science
jobs in the future because of the fast evolution of big data
and the increased availability in accessing programming
tools like R and Python. Machine learning applications
improve over time since they learn through the addition
of more data thus showing how important data cleaning
is when dealing with big data analytics.

Wang [9] conducts a thorough examination of time series
data cleaning techniques and reviews methods for each
type. This examination aims to solve problems presented
in the cleaning of time series data. Specifically, there are
four types of errors in time series data- continuous, single



big, single small, and translational. Ignorance toward
these errors can lend to inefficiencies in time series
models. However, the cleaning of time series data is
difficult, given large amounts of data and errors, complex
causes for errors, continuous generation and storage, and
the minimum modification principle. To attempt to
handle these problems and difficulties, Wang examines
four types of techniques. These are smoothing based,
constraint based, statistics based, and anomaly detection.
Via testing, concludes that, in general, smoothing
techniques require a lesser time demand, but may distort
results given the ease of changing originally correct data.
Constraint based methods are found to be generally
too-strict for time series cleaning, as these are based on
equality relationships; however, initial anomaly detection
offers some promise of resolution, as these could treat
outliers before implementing strict constraint based
cleaning algorithms. With a variety of adaptive statistical
techniques, these types tend to fare better for time series
cleaning. With these methods, algorithms can be chosen
based on desired or optimal sample sizes, outcome
probabilities, and relationships between outcomes,
granting more-accommodating results that do not greatly
bias data or change correct values. Unsurprisingly, finds
that anomaly detection algorithms play an important role
in time series cleaning, as these support the principle of
minimum modification and may improve the success of
further cleaning techniques with preliminary anomaly
handling. Conclusively, the research conducted leads to
encouraging application and development of these
algorithms to improve time series cleaning, with careful
consideration of the specific data, causes for errors, and
the desired results.

When discussing the preprocessing, cleaning, and
analysis of data, larger datasets prove to be problematic,
since they can often be unreliable, unscalable, and very
slow to work with. Triguero [10] made this process more
efficient for big data by using the k-nearest neighbor
(k-NN) algorithm to turn big data into what he dubbed
“smart data”. This algorithm can reduce the size of data
by removing redundant data, and correct data
imperfections seen from noisy and missing data. Apache
Spark Packages were also analyzed and compared with
one another on their accuracy, reduction of data, and
runtime of the algorithms in question. Although all k-NN
algorithms improve upon big data, it was found that the
most efficient algorithm to use is situational for each
dataset in question.

3. Methodology

3.1 Datasets

The first dataset, which was acquired from Kaggle,
contains weather data from the city of Delhi, India. From
January 1st, 2013 to April 24th, 2017. The mean
temperature (in Celsius), humidity (grams of water vapor
per cubic meter volume of air), wind speed (in

kilometers per hour), and mean pressure (in atmospheric
pressure) was tracked using the Weather Underground
API, and are quantified as numeric features. The data
comes pre-split into a training and test set, with 1,462
and 114 observations respectively.

The second dataset comes from the UCI Machine
Learning Repository. Much like the first dataset, the data
is allocated daily, with the exception being the lack of
weekends, due to the data pertaining to stocks from
within the public stock market. This dataset was created
to test the efficiency of convolutional neural networks
(CNN) for automatic feature selection and market
prediction through the closing values of five different
stocks: DJI, NASDAQ, NYSE, RUSSELL, and S&P
500. Alongside the five dependent values, there are also a
variety of features split into groups. These groups
include: technical indicators of the closing value of the
dependent stock, the treasury bill’s secondary market
rate, change in market yield on U.S. Treasury securities,
relative change in prices of commodities, returns of
different world indices, exchange rates between the U.S.
dollar and other currencies, returns of U.S. companies,
and returns of futures. All data was gathered from
December 31st, 2009 to November 15th, 2017. Each
dependent closing value for the five stocks has its own
dataset containing these values, resulting in each
containing 84 features and 1,984 records. Because most
of the features are the same across each of the five
datasets, they were combined into one dataset, with the
technical indicators of each dependent variable also
being removed. This brought the features down to 74.

When looking at the collection of datasets, those based
on predicting weather were found to have no blank
values, while the stocks had several missing values. Data
cleaning will be discussed in detail in the next section.

3.2 Preprocessing and Transformations

3.2.1 Cleaning Blank Values

The weather dataset contained no blank values to handle.
However, the stocks data had 2,692 missing values
across many variables. To handle these, Weka was
utilized to fill missing values by using the unsupervised
procedure, ReplaceMissingValues. This replaced each
missing value with the feature’s mean value, which was
acceptable since the values that were missing were from
features representative of changes in quantitative values,
(I.e., prices of different stocks, commodities, futures,
etc.). The data was cleaned in this manner over using
algorithms due to the simplicity of the data used in this
study, and low portion of missing data.

3.2.2 Dimensionality Reduction



As the weather dataset has a small number of features,
there was no need to reduce the number of dimensions
for that dataset. Dimensionality reduction of the stocks
dataset was deemed necessary due to its larger number of
dimensions, and therefore was split into three steps:
manually removing features that demonstrated ≥ 0.80
correlation with other independent variables, running
stepwise regression, and performing principal component
analysis (PCA).

After cleaning the stocks dataset, it was found that
attempting to run stepwise regression to decide important
variables was impossible, due to the AIC being negative
infinity. This is a result of the data being overfitted when
including every variable. To remedy this problem, the
data was normalized, and several correlation matrices
were run on subsets of the features (for the sake of
readability). Completing this left 37 independent
variables that saw no heavy correlation between each
other.

Fortunately, the AIC was no longer negative infinity, so
stepwise regression was feasible with what remained.
These regressions were performed on each dependent
variable individually to see if any of the dependent
variables exhibit unique variance from select independent
variables, or if they are explained by similar features.
The forward selection resulted in no change in the feature
selection. Meanwhile, both the backward elimination,
and bidirectional elimination methods, resulted in
anywhere from nine to twelve features. Fortunately,
every variable exhibited in these were the same. The
twelve variables that were kept are as follows: DGS10,
GBP, CNY, GE, MSFT, SSEC, TE6, DE4, CTB3M,
CTB6M, copper.F, and silver.F. Explanations on these
variables can be found in the corresponding paper [6].
Upon investigating the results of these models, the value
allocated to the CNY (exchange rate between the U.S.
dollar and the Chinese yuan) regressor was significantly
higher than all the others, including the intercept. Though
this is not indicative of the U.S. and Chinese economies
having a causational relationship, further investigation
into their stocks could help explain any possible
correlations seen between the two economic superpowers
of the world.

Performing the PCA on the stocks dataset (with five
different analyses for each dependent variable) did not
result in any significant reductions of the dataset. When
interpreting the results of a PCA, the first few principal
components that explain at least 80% of the variance are
kept. This ratio is increased to 90% if other analyses are
to be performed following the PCA. For 90% of the
variance to be accounted for, 9 principal components
would need to be selected of the 12. As shown in Figure
1, this lack of significant results in conducting a PCA on
the stocks dataset is the result of the data being mutually
orthogonal, meaning that there are no redundancies in the
dataset. However, this means that dimensionality

reduction cannot be performed any further. The PCA was
also run before stepwise regression, with similar results.
This concludes that there were no redundancies in the
dataset, and that the minimum number of features
necessary to best explain the variation of the stocks
datasets are the twelve mentioned earlier in this section.

Fig. 1 Principal Component Analysis Scree Plot of the Stocks
Dataset

3.2.3 Erroneous Values and Outliers

With the information on both datasets available online,
there were some erroneous values found in the weather
dataset, but no significant outliers (barring blatant errors
seen in the weather data) in both. The egregious errors
that appeared were for some values of mean pressure. For
example, a -3 in atm is physically impossible as 0 atm is
a vacuum. These values were corrected by researching
the weather data of Delhi, India on timeanddate during
the day the erroneous value was recorded. On this site,
the pressure was measured seven to eight times across
three hour intervals in inches of mercury (“Hg). Each
value was corrected with the average of these values and
converted to atmospheric pressure (atm). The weather
data no longer experienced outliers as a result of these
corrections. Outliers for the stocks dataset are kept as
many features exhibit a balanced ratio of high and low
outliers, but are accounted for in the next section on
transforming the data.

3.2.4 Transformations

Some of the algorithms being performed in this study
require the data to be normalized and normally
distributed. Henceforth, it is important to check said data
for these assumptions. The weather data exhibits normal
distribution for each of the variables, but the stocks data



has two variables which have slight negative skew: DE4
and CTB6M. DE4’s data is mostly positive, with very few
that are negative. To solve this, the data can all be
increased by some constant that is slightly larger than the
absolute value of the smallest value (to account for the
possibility that future data may be slightly lower than the
current minimum value). Then, those values can go
through log transformation, which results in normal
distribution. For CTB6M, a lot of values are negative, so
this can be solved by taking the absolute value of the
variable, and then put them through log transformation.
However, when running this, a large amount of values
become negative infinity, which are considered to be NA
values. As such, the original CTB6M value is used, and
not the transformed one. The effects of these changes are
demonstrated below in Figure 2.

Fig. 2 Histograms of the Original and Transformed DE4 and
CTB6M Features

3.3 Analysis Methods

For this study, the following three algorithms were used:
Vector AutoRegression (VAR), Long Short-Term
Memory (LSTM) neural networks, and Facebook’s
Prophet algorithm. For the sake of ease, the VAR and
LSTM neural networks were programmed in R, and
Facebook Prophet was programmed in Python (R’s
version of prophet had no existing documentation on its
usage for multivariate time series forecasting).

VAR seeks to capture the relationship between multiple
quantities as they change over time. This makes the
model act as if each feature is its own dependent
variable, so it will not require data to be normally
distributed, but will still need normalized and lagged
data. There are several diagnostics to run for the model
of this algorithm that are possible with the vars package
in the R Programming language:

1. The Phillips Perron test to determine stationarity
of the features (which occurs before the creation
of the model)

2. Determining an optimal number of lags
3. A serial test for autocorrelation
4. The ARCH test for heteroscedasticity
5. A normality test for distribution of residuals
6. Stability test for presence of structural breaks
7. Granger causality testing to see if each time

series is useful in forecasting the others
8. Impulse response functions (IRFs) to see how

shocks in each feature affects one another
9. Forecast error variance decomposition (FEVD)

to see what errors in each variable are caused by

Once the diagnostics are performed, the forecast can be
analyzed and checked for accuracy based on the root
mean squared error (RMSE). The lower the RMSE value,
the more accurate the generated results are. For the
weather dataset, the optimal number of lags for the VAR
model was p = 3 based on the Schwarz Criterion (SC(n))
for lag selection, the order of integration is d = 1, and for
the stocks dataset, p = 2 and d = 1.

In accordance with the LSTM neural networks, the data
will need to be made stationary, lagged, and normalized
for optimal accuracy in forecasting. The input is then put
into a three-dimensional array and the model is compiled
using the keras package available in R.

Meanwhile, Facebook Prophet is extremely easy to use
and only requires the data to be separated into training
and test sets, and then input into the model. Prophet is
based on the sklearn model API, and only requires the
user to placate each independent feature as a regressor,
the algorithm will do the rest. Forecasting (both
univariate and multivariate) with Prophet is built in a
model using the smooth line of y(t) = g(t) + s(t) + h(t) +
e, where the variables are representative of overall
growth trend, seasonality, holiday effect, and error term
(or residual) respectively. Users can then fine tune the
forecasts based on their domain knowledge. Prophet is
available in both R and Python, but for this study,
Python’s prophet package was chosen due R’s lack of
multivariate time series forecasting for their version of
Prophet. Every algorithm is assessed based on their
calculated RMSE and compared alongside each other.

4. Results

Facebook Prophet produces the best forecasting models
by far. However, the LSTM neural networks and VAR
algorithm show different results based on the size of the
dataset. VAR performed better than LSTM neural
networks for the weather dataset, while the inverse took
effect for the stocks dataset. LSTM neural networks tend
to perform better with more features to work with, so it
makes sense that for the most part, LSTM outperformed



VAR on the stocks dataset. The neural network actually
performed almost on par with Facebook Prophet for the
RUSSELL_Close feature, and worse than VAR for the
NASDAQ_Close feature. The RMSE values for each
algorithm are listed in Table 1.

Table 1
Algorithm RMSE Values

When ranking the algorithm’s performance, Facebook
Prophet is unconditionally the best of the bunch, earning
a total of 18 points. LSTM is only slightly better than
VAR, acquiring 10 and 8 points respectively. This
ranking is demonstrated in Table 1.

Table 2
Algorithm Performances

From this research, Facebook Prophet is the best
algorithm to use for multivariate time series analysis, no
matter the size of the data. Not only due to its
consistently high accuracy of predicted results, but its
simplicity to implement. However, when choosing
between VAR and the LSTM network, it is dependent on
the size of the dataset. If the dataset is smaller and
doesn’t have a high number of dimensions, VAR is the
best bet. On the contrary, if the dataset is larger with
more dimensions, the LSTM network is the better choice.

The visualizations of the meantemp feature from the
weather dataset and DJI_Close feature from the stock
dataset are shown for each algorithm in Figures 3-8
below.

Fig. 3 Weather VAR Model Fan Chart Time Series

Fig. 4 Weather LSTM Network Model Time Series

Fig. 5 Weather Facebook Prophet Model Time Series



Fig. 6 Stock VAR Model Fan Chart Time Series

Fig. 7 Stock LSTM Network Model Time Series

Fig. 8 Stock Facebook Prophet Model Time Series

It should be noted that each of the dependent variables
that were analyzed are on a different scale from one
another. For example, meantemp from the weather
dataset saw values ranging from 6 to 38.71, while
DJI_Close from the stocks dataset ranges from 9,686 to
23,563. So, with the RMSE for DJI_Close being
1,647.713, that doesn’t make it significantly worse than
meantemp, which had an RMSE of 3.889. The variable
will usually perform similarly with each algorithm to
each other, though exceptions do exist from this study as
demonstrated by NASDAQ_Close performing much
poorer than the other features of the stocks dataset for the
LSTM neural network, but much better for the VAR
algorithm.

5. Conclusion

This study demonstrates and compares the viability of a
few multivariate time series forecasting algorithms.
Facebook Prophet was unquestionably the best algorithm
as it outperformed VAR, which performs better with
smaller datasets, and LSTM neural networks, which
performs better with larger datasets. The results seen for
VAR and LSTM neural networks are as expected as they
follow similar trends in performance from previous
studies. Facebook Prophet was able to best account for
the seasonal trend of data, while the other two lacked
slightly in this regard for different reasons. VAR
understood the seasonality, but its strength was not fully
taken into regard by the model. Meanwhile, LSTM
identified the trend, but failed to implement it with
seasonality.

6. Future Work

A further investigation of how these algorithms perform
is warranted through the means of more datasets to test
them on. The datasets didn’t allow forecasting to be
tested for longer than a few months to around two years,
due to the small amount of records both datasets
contained. Datasets with prolonged periods of time
should be analyzed to test the efficiency of these
algorithms over prolonged periods of time. Additionally,
there are certainly more multivariate time series
forecasting algorithms that could be tested as well, like
the Gated Recurrent Units (GRU) and CNN neural
networks, Multivariate Bayesian Structural Time Series
(MBSTS) algorithm, and Google’s Temporal Fusion
Transformer to name a few. There are also variants of the
VAR algorithm to investigate as well, like the
Vector-Integrated AutoRegressive Moving Average
(VARIMA) algorithm.

Some of these algorithms are available in both Python
and R, so a study could also be run with much larger
datasets to test the efficiency of these algorithms in
different programming languages.



As was discussed in the dimensionality reduction section
of this paper, a study comparing and correlating various
economies around the world to one another over the
course of several years is also another path forward from
this study, and would prove beneficial to understanding
and predicting shifts in economic tides.

With how well the algorithms performed at predicting
future values, further research into implementing such
algorithms for data cleaning is another topic of
contention to work towards in the future. Data cleaning,
as a field of research within the data science community,
is still young, with not a lot of attention given to it,
despite considerably being the most important part of the
data analysis process. A program or package created in a
programming language, like R or Python, with the
objective of cleaning data could prove useful to ease this
process, while also demonstrating the effectiveness of
these algorithms with more realistic data. However, it
should be important to note the algorithms performed in
this research were made for time series data, so a variety
of different methods of data prediction should be used in
such a program (I.e, regression, classification,
forecasting, etc.).

There also seemed to be a lack of other research done
with the datasets to compare the results in this research
to. Research that does exist, does not contain the
algorithms performed here. When more research is done
on these datasets with VAR, LSTM, and/or Facebook
Prophet, the results from this study can be compared
accordingly.
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ABSTRACT 
Maternal risk factors are analyzed to predict the 
susceptibility of morbidity or receiving a cesarean section. 

The goal of this system is to identify maternal risk factors 

that would put pregnant women at higher risk for morbidity 

and cesarean sections. Three classification models were 

investigated over two datasets, containing data from 1,014 

and 80 patients respectively. The models were used to 

analyze the maternal risk factors that increase the 

likelihood of maternal mortality and rate of cesarean 

section. The data consisted of vital signs and age of the 

patients. The results showed that the Random Forest 

algorithm performed better than both Bayes Net and 

Attribute Selected Classifier in terms of accuracy and 

specificity. The accuracy was reportedly 84.5% in the 

Maternal Health Risk dataset, which is the highest overall, 

and 62.5% in the Caesarian Section Classification dataset. 

In terms of average accuracy, Random Forest performed 

the best with an accuracy of 73.5% between both datasets. 
Specificity for the Caesarian Section Classification dataset 

(73.9%) was the highest using Random Forest. Results also 

showed that with the Maternal Health Risk dataset, both 

high (96.2%) and low-risk categories (92.9%) had the 

highest specificity. 

 

KEY WORDS 
Maternal Risk Factors, Cesarean Section, Morbidity, 

Random Forest, Attribute Selected Classifier, Bayes Net. 

 

1.  Introduction 
 

Maternal morbidity refers to any short- or long-term health 
problems that occur as a result of pregnancy or childbirth. 

It can manifest in different ways and in some cases can lead 

to maternal mortality [1]. In the U.S. alone, over 60,000 

women are affected every year [2]. Older maternal age, 

abnormal blood pressure, glucose levels, and any heart 

conditions that may arise are all factors that can contribute 

to maternal morbidity [3]. Some of these factors can also 

be determinative of whether a cesarean section will be 

performed [4,5]. While generally a safe procedure, delivery 

by a cesarean section is associated with a higher risk of 

maternal morbidity compared to a vaginal delivery [6]. Not 

all risk factors will  increase the chance of a cesarean 

section delivery or maternal morbidity, but it would be 

crucial to the patient and to  health care providers to know 

if any of the attributes of the pregnancy would be 

significant enough to cause any health problems during or 

after the pregnancy. This can prevent maternal mortality 

and even fetal mortality. The purpose of this study is to 

identify the algorithm that works the best for classifying 

how vulnerable a woman is to maternal morbidity and a 

cesarean section delivery based on health risk factors in 

order for preventative measures to be taken by healthcare 

providers to reduce the chance of maternal morbidity. 

 

Existing studies on this topic were limited in their research 

based on their choice of algorithms. Many of the same 
algorithms were utilized in the studies previously 

conducted. This study tests Random Forest, in addition to 

two other algorithms, Attribute Selected Classifier and 

Bayes Net, that were not seen in previous literature. Other 

studies did not address specificity in their results, which 

will be analyzed in this study. 

 

Previous studies addressing risk level of morbidity based 

on maternal risk factors as well as cesarean sections have 

utilized classification analysis. Classification analysis was 

used to study maternal risk factors and their relationship 

between risk of morbidity and cesarean sections with the 

most commonly used algorithms being Random Forest, 

Support Vector Machine and Naive Bayes. One dataset 

used in these previous studies was collected using wearable 

sensors and a questionnaire that was reviewed by medical 

doctors at different hospitals and maternity clinics. Another 

dataset used in the previous studies was collected through 
patient records at a healthcare center. 

 

In this study the performance of three algorithms on these 

datasets are evaluated: 1) Bayes Net 2) Attribute Selected 

Classifier and 3) Random Forest. The use of two other 

algorithms can further broaden the perspective of which 

algorithms are best for classification. By classifying this 

data our goal would be to identify patients’ risk factors, 

which can then be used to build an early detection model 

used in medical practice to implement preventative 

measures and mitigate negative outcomes in this patient 

population. Attribute Selected Classifier is a class for 

running an arbitrary classifier on data that has been reduced 

through attribute selection. Bayes Net is a base class for a 

Bayes Network classifier that provides data structures and 

facilities common to Bayes Network learning algorithms. 



Random Forest is a class for constructing random forests, 

which are a combination of tree predictors such that each 

tree depends on the values of a random vector sampled 

independently and with the same distribution for all trees 

in the forest [7]. 

 

The remainder of this paper is organized as follows: 

Section 2 introduces our main new contribution, Section 3 
introduces related work, Section 4 describes the 

methodology, Section 5 discusses the results of the study, 

Section 6 concludes our study, and Section 7 provides 

additional recommendations and areas for further study. 

 

 

2.  New Contribution 
 

The goal of this system is to correctly identify maternal risk 

factors that would put pregnant women at higher risk for 

morbidity and cesarean sections, allowing providers to 

better care for these patients and decrease the 

complications associated with these risk factors. 

 

By implementing an early detection risk assessment tool 

that can accurately identify factors that would put pregnant 

women at higher risk for morbidity, providers could take 

early action and potentially mitigate negative outcomes. 

The model could also identify factors that put pregnant 

women at higher risk for cesarean sections. Oftentimes, 

factors that increase risk for morbidity in pregnant women 

overlap with factors that would put them at risk for having 

a cesarean section delivery. This model could be integrated 

into an organization’s Electronic Health Record (EHR) and 
would extrapolate the risk factor information from an 

existing patient’s chart. By doing this, the data could be 

continually updated with each office or hospital visit made 

by the patient. The model would place women into 

categories of risk level similar to the Maternal Health Risk 

dataset used in this study. The model would pull data from 

the chart such as age, vital signs (heart rate, blood 

pressure), gravidity and parity, current gestational age, lab 

results including blood glucose, history of preterm 

deliveries or miscarriages, history of previous cesarean 

sections, and any number of other factors that could impact 

the risk level of the pregnancy or whether that patient could 

have a cesarean section. After compiling the data, the 

model would operate under thresholds determined and set 

by medical doctors to then place these patients into risk 

levels. When placed in low, medium, or high-risk 

categories clinicians would be aware of this risk level and 
could better provide care and educate their patients 

depending on their risks.   

 

One action that can be taken as a result of a patient being 

flagged as medium or high-risk is implementing 

continuous monitoring. Monitoring vital signs such as 

blood pressure, temperature, and heart rate can quickly 

determine whether or not a woman should seek medical 

attention. By electronically recording their vital signs at 

home, patients and their providers can be alerted. When 

providers are notified, they could instruct their patients to 

report to their office or a higher level of care immediately 

if the recorded data is out of range. This system would 

increase safety and reduce preventable complications or 

even death of pregnant women and their neonates.  

 

This model could also be used on an organizational level 

for the proper allocation of resources towards high and 
medium-risk patients. For example, if an organization has 

a large amount of high and medium risk patients that need 

more frequent bloodwork, ultrasounds, other forms of 

testing, or office visits, additional funding can be given to 

this area at that given time. During periods of large 

amounts of low-risk patients, the resources could be 

allocated to other areas. This could save them money in the 

long term. This could be especially important for 

healthcare organizations that are smaller and have limited 

funding and personnel. 

 

People living in rural areas especially are known to have 

trouble with accessibility to healthcare as there are not 

many hospitals located in those areas. One concern that had 

risen a few years ago is that there are several rural areas 

that did not have obstetrician and gynecological services 

that had training on performing cesarean sections leaving 
many women in those areas at risk of maternal morbidity 

and mortality [8]. There have been plans to increase 

training on cesarean sections for family physicians, but that 

could take a while to implement [8]. With the use of  

classifier algorithms to identify how at risk the women are 

for cesarean sections or maternal morbidity, it gives the 

women a chance to find a physician nearby that is 

comfortable performing cesarean sections or find 

accommodations closer to the hospital when their due date 

is near. This could significantly reduce the maternal 

morbidity rates and perinatal mortality in rural areas. 

 

 

3.  Related Work 
 

There have been several studies in the healthcare domain 

that have used data mining techniques to predict delivery 

by cesarean section and risk level in pregnant women.  
 

For example, in one study classifiers were applied to the 

Caesarian Section Classification dataset that was utilized 

in this study. Six different algorithms were tested, 

including Naive Bayes, Support Vector Machine, K-

Nearest Neighbor, OneR, J48, and Random Forest. The 
study found that Naive Bayes was able to correctly classify 

unseen cases and was the most accurate algorithm at 65%. 

However, all of the algorithms tested did not have large 

differences in accuracy. This dataset used was based on 

real-life data, while other similar studies utilized training 

sets. This study also utilized the cross-validation approach 

to ensure more realistic and reliable results.  [9]  
 

Another study also used the Caesarian Section 

Classification dataset utilized in this study. The study 



aimed to create a healthcare operational decision-making 

system using machine learning classifiers. The goal was to 

assist doctors in making the best decisions for a given 

patient, specifically to identify whether a cesarean section 

surgery should be performed. They chose to test the system 

on cesarean sections as the surgery helps to save woman 

and child, and as it is the most commonly performed 

obstetric surgery in the world. Five different algorithms 
were tested, including Support Vector Machine, Random 

Forest, Naive Bayes, K-Nearest Neighbor, and Logistic 

Regression. The study found that K-nearest Neighbors and 

Random Forest were the most accurate at 95%.  [10] 
 

Another predictive model monitored pregnant women by 

analyzing their health data and identifying their risk 

intensity level. The researchers of this study collected the 

maternal health data that is being used in this study. Their 

focus was the development of wearable sensors to monitor 

pregnant patients and identify patients at risk even when 

they are in a remote location. The study’s concern was in 

improving maternal health and reducing maternal and child 

mortality as these rates have not yet declined to meet the 

goal set by the United Nations.  They tested eight different 

algorithms, including Decision Tree, Random Forest, 

Support Vector Machine, Sequential Minimal 
Optimization, Logistic Regression, Naive Bayes, IBk, and 

Logistic Model Tree. The study found that Decision Tree 

(98.51%) was the most accurate with Random Forest 

(98.42%) and IBk (98.32%) as close seconds.  [11] 
 

Another study used the Pima Indian Diabetes dataset, a 

diabetes dataset for women that was filtered and 

categorized according to maternal risk level. This study 

similarly sought to monitor pregnant women with wearable 

sensors in order to notify the women, their families, and 

respective doctors of their condition. They tested five 

different algorithms, including Sequential Minimal 

Optimization, IBk, Logistic Model Tree, Naive Bayes, and 

Logistic Regression. The study found that Logistic Model 

Tree was the most accurate with a rate of 97.96%. [12] 
 

This study is different from the previous literature as it will 
test not only Random Forest, seen in previous works, but it 

will test two other algorithms, Attribute Selected Classifier 

and Bayes Net. These algorithms were not seen in previous 

literature. Other studies did not address specificity in their 

results, which will be analyzed in this study. 
 

 

4.  Methodology 
 

4.1 Dataset 
 

There are two datasets used in this study. The Caesarian 

Section Classification dataset [13] contains information on 

80 pregnant women. This data was collected from a 

healthcare center in Tabriz, Iran through patient records. It 

ranks specific attributes of their pregnancy such as their 

age, delivery number, delivery time, blood pressure and 

whether they delivered vaginally or by cesarean section. 

There was a range of ages among the women with the 

youngest being 18 years old and the oldest being 40 years 

old. The delivery time was classified as zero, one, and two 

for timely, premature, and latecomer. The women's blood 

pressure was ranked 2 for high, 1 for normal, and 0 for low. 

Any heart problems were classified with a 0 for apt and a 1 

for inept.  
 

The Maternal Health Risk dataset [14] contains a sample 

of 1014 women in Dhaka and Khulna, Bangladesh. This 

data was obtained through the use of wearable sensors as 

well as using a questionnaire at different hospitals and 

maternity clinics.  This dataset contains the ages of the 

women, their systolic and diastolic blood pressure values, 

their blood glucose level, their heart rates, and the 

predicted risk intensity level during their pregnancy. The 

identification of risk level was determined by medical 

doctors who reviewed the questionnaires. 
 

The datasets were analyzed using Weka [15] version 

3.6.14. Bayes Net, Attribute Selected Classifier, and 

Random Forest were utilized and compared. Accuracy, 

sensitivity, and specificity were used to compare the 

results. These measures will be discussed in greater detail 
in section 4.3. 
 

4.2 Preprocessing & Analysis Preparation 
 

Before the Maternal Health Risk dataset can be classified 

it needs to be preprocessed to show the best results. There 

was a slight class imbalance between the high-risk and 

low-risk cases. Before running the class balancer filter on 

Weka, looking at the dataset revealed that there may be 

some cases of duplication in the data set that would need to 

be removed in order for the classifier to produce more 

accurate results. After the duplicates were removed, the 

class balancer filter was applied.  
 

Since there were only 80 instances for the Caesarian 

Section Classification dataset, it was much easier to 

analyze. With so few instances, there was also worry that 
there would be duplicates   that would reduce the number, 

but after viewing the data there did not seem to be anything 

wrong with it. There was a slight class imbalance between 

cases which was resolved with the Class Balancer filter on 

Weka.  
 

When using the Bayes Net algorithm to classify both 

datasets, some parameters were modified. For the Maternal 

Health Risk dataset the estimator was changed to simulated 

annealing which works well for a larger dataset. 

Debugging was also switched to true so that any errors can 

be removed for the best possible results. The simulated 

annealing estimator did not work well for the Caesarian 

Section Classification data set possibly due to it having a 

smaller sample size. The BMA estimator was chosen for 

the Caesarian Section Classification dataset as it provided 

the best results for the small sample size. 



 

The Attribute Selected Classifier had the most 

modification in terms of parameters. The classifier chosen 

for both datasets was J48 so that data could be seen 

categorically and continuously. The search parameter was 

changed to ranker as it ranks attributes by their own 

individual evaluation. This paired with the symmetrical 

uncertainty attribute evaluator gave the best results for the 
Maternal Health Risk dataset. The same parameters were 

kept for the cesarean data except the evaluator was changed 

to the classifier subset evaluator as it gave better results 

possibly due to the difference in sample sizes. 
 

The Random Forest algorithm parameters were kept at 

default settings as any changes reduced the accuracy, 

precision, and specificity. The only change made was the 

debugging parameter was turned on to identify and remove 

any errors in the classifying process. 
 

4.3 Analysis Methods 
 

The following three algorithms were used: 1) Attribute 

Selected Classifier 2) Bayes Net and 3) Random 

Forest.  Attribute Selected Classifier is a class for running 

an arbitrary classifier on data that has been reduced through 
attribute selection. Bayes Net is a base class for a Bayes 

Network classifier that provides data structures and 

facilities common to Bayes Network learning algorithms. 

Random Forest is a class for constructing random forests, 

which are a combination of tree predictors such that each 

tree depends on the values of a random vector sampled 

independently and with the same distribution for all trees 

in the forest [4] 
 

For each algorithm, 10-fold cross validation and 

Percentage Split of 66% (Split) were applied on the two 

datasets. 
 

The results of the three algorithms on the two datasets were 

analyzed and compared. This study compares the following 

results: 
1. Accuracy, which is the percentage of correctly 

classified instances. This was obtained from the 

Weka output. 

2. Sensitivity, which is the proportion of positive 

instances that were correctly identified. This is 

calculated using the formula: TP / (TP + FN), 

where TP is the number of true positives and FN 

is the number of false negatives. 

3. Specificity, which is the proportion of negative 

instances that were correctly identified. This is 

calculated using the formula: TN / (TN + FP), 

where TN is the number of true negatives and FP 

is the number of false positives. 

 

 

 

 

 

Table 1 
Weka Scheme & Filters 

Algorithm Type Weka Attribute 
Bayes Net Scheme weka.classifiers.bayes.BayesNet -D -Q 

weka.classifiers.bayes.net.search.local.Si

mulatedAnnealing -- -A 10.0 -U 10000 -

D 0.999 -R 1 -S BAYES -E 

weka.classifiers.bayes.net.estimate.Simpl

eEstimator -- -A 0.5 

 Filter weka.filters.supervised.instance.ClassBal

ancer-num-intervals10 
Attribute 

Selected 

Classifier 

Scheme weka.classifiers.meta.AttributeSelectedC

lassifier -E 

"weka.attributeSelection.CfsSubsetEval -

P 1 -E 1" -S 

"weka.attributeSelection.BestFirst -D 1 -

N 5" -W weka.classifiers.trees.J48 -- -C 

0.25 -M 2 

 Filter weka.filters.unsupervised.attribute.Remo

ve-V-R5,4,3,1-2,6 
Random 

Forest 
Scheme weka.classifiers.trees.RandomForest -P 

100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 

0.001 -S 1 

 Filter Default settings 

 

This study will identify the algorithm that best classifies 

both datasets according to accuracy, sensitivity, and 

specificity. 
 

 

5.  Results 
 

As shown in Figure 1, Random Forest provided the most 

accuracy with the Maternal Health Risk dataset with 84.5% 

accuracy. Bayes Net provided the most accuracy with the 

Caesarian Section Classification dataset with 67.3% 

accuracy. Attribute Selected Classifier performed the 

poorest in this metric, with 78.6% accuracy for the 

Maternal Health Risk dataset and only 57.6% accuracy for 

the Caesarian Section Classification dataset. 
 

 
Fig 1. Average accuracy of the Caesarian Section Classification and 

Maternal Health Risk datasets across Attribute Selected Classifier, 

Bayes Nets, and Random Forest 
 

In regard to sensitivity, Figure 2 shows that Bayes Net 

correctly classified the positive instances (no cesarean 

section) 64.7% of the time with the Caesarian Section 

Classification dataset. Random Forest performed the 
poorest in this metric at 47.1%. 
 



 
Fig 2. Average sensitivity of the Caesarian Section Classification 

dataset across Attribute Selected Classifier, Bayes Nets, and 

Random Forest 
 

Because the Maternal Health Risk dataset is a multi-class 

dataset and cannot use binary classification, the 

sensitivities of each individual risk level were calculated. 

Figure 3 shows that with the Maternal Health Risk dataset, 

Random Forest correctly classified the positive instances 

greater than 81.0% of the time in the low, mid, and high-

risk categories. High-risk patients, arguably our most 

important risk level to be classified correctly, were 

correctly classified 90.1% of the time. Bayes Net placed 

mid-risk patients in the mid-risk category, remarkably, 

only 38.4% of the time. A closer look at the Confusion 

Matrix shows that mid-risk patients were mostly being 

incorrectly placed in the low-risk category. This metric is 

greatly problematic as our goal is to identify at-risk patients 

and would not want patients being misclassified as low-risk 

as this would underestimate their risk level.  
 

 
Fig 3. Average sensitivity of risk levels in the Maternal Health 

Risk  dataset across Attribute Selected Classifier, Bayes Nets, and 

Random Forest 
 

In regard to specificity, Figure 4 shows that Random Forest 

performed the best in this metric with the Caesarian 

Section Classification dataset and correctly classified the 

negative instances (cesarean section) correctly 73.9% of 

the time. 
 

 
Fig 4. Average specificity of the Caesarian Section Classification 

dataset across Attribute Selected Classifier, Bayes Nets, and 

Random Forest 
 

Because the Maternal Health Risk dataset is a multi-class 

dataset and cannot use binary classification, the 
specificities of each individual risk level were calculated. 

Figure 5 shows that Random Forest correctly classified the 

negative instances greater than 87.3% of the time in the 

low, mid, and high-risk categories. Bayes Net performs the 

poorest in this metric: 70.1% of the time the algorithm 

predicts that the patient should not be low-risk and is 

correct, meaning that 29.9% of the time the algorithm 

predicts that the patient would not be low-risk but is. This 

would be problematic in practice as this is overestimating 

risk level. This could lead to over allocation of resources 

by the healthcare organization towards patients that are 

thought to be mid or high-risk but are in fact low-risk, such 

as additional testing, bloodwork, or office visits that are not 

clinically indicated. This would not only save the 

organization money, but also cut down on unnecessary 

medical expenses for the patient. 
 

 
Fig 5. Average specificity of the risk levels in the Maternal Health 

Risk dataset across Attribute Selected Classifier, Bayes Nets, and 

Random Forest 
 

 

 

 



6.  Conclusion 
 

This study demonstrates the effectiveness of Random 

Forest in classifying pregnant patients into risk levels and 

whether or not patients received a cesarean section. The 

Random Forest algorithm achieved an accuracy rate of 

84.5% with the Maternal Health Risk dataset and 62.5% 

with the Caesarian Section Classification dataset, or an 

average accuracy of 73.5% between both datasets. It 

correctly classified positive instances of the high-risk class 

90.1% of the time, mid-risk class 84.2% of the time, and 

low-risk 81% of the time. It correctly classified negative 

instances of the high-risk class 96.2% of the time, mid-risk 

class 87.3% of the time, and low-risk class 92.9% of the 

time. It correctly classified having a cesarean section 
73.9% of the time. The only metric in which this algorithm 

did not perform well was classifying not having a cesarean 

section at 47.1%. 
 

In this study different algorithms were tested and analyzed 

them with metrics not previously seen in other literature. 

Our results ultimately showed that Random Forest 

performed the best out of our three algorithms, similar to 

what some previous studies found. 
 

In studying these algorithms and finding the high rates of 

accuracy, sensitivity, and specificity in our datasets run 

with Random Forest, it allows us to accurately identify 

pregnant patients who are at risk for morbidity and having 

a cesarean section. This algorithm performs well in these 

metrics, making it feasible to implement an early detection 

risk assessment tool that would operate complementary to 
the oversight of providers.  
 

 

7.  Future Work 
 

Further recommendations that would benefit this area of 

study in the future include implementing datasets with 
larger study groups. For our dataset on Cesarean Sections, 

the study group consisted of only 80 participants. This 

issue led to lower accuracy rates for this specific dataset. 
 

Another additional area of study would be to include other 

algorithms not previously tested in related literature. 

Another possible recommendation for future study is to 

investigate and implement more attributes, or risk factors, 

that are significant in predicting maternal morbidity or 

cesarean sections into our study. With more attributes 

larger amounts of data can be analyzed. By analyzing Big 

Data to create a new algorithm, the best possible results 

will be provided. 
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ABSTRACT
The Collatz Conjecture is an unsolved problem in mathemat-
ics which has plagued mathematicians for decades. Its intu-
itive and seemingly simple formula belies incredibly complex
behavior, and no attempt to prove or disprove it has been suc-
cessful. With the creation of more powerful computers and
more accessible programming languages, many have turned
to attempting to write computer programs to prove or dis-
prove this conjecture. In this paper, we show that directly
proving or disproving the Collatz Conjecture via a computer
program not only hasn’t been done, but is in fact an impossi-
ble task for modern computers.

1 Introduction

The Collatz Conjecture has been an unsolved problem in
mathematics for decades. This conjecture will be explained in
more detail in Section 3, but it basically states the following:
Given a positive whole number, repeatedly either multiply it
by 3 and add 1 (if it’s odd) or divide it by 2 (if it’s even),
and your number will eventually arrive at 1. Many people
have tried to prove or disprove it, but its seemingly simple
formula belies its incredibly complex behavior. It has been
stated that modern mathematics “is not ready for this sort of
problem” [1], and many a budding mathematics researcher
has been gently steered away from this problem.

With the explosion in popularity of computers and program-
ming languages, a new strategy has arisen for solving the
problem - the use of computer programs. Computer programs
have been used to test quintillions of numbers to attempt to
find a solution. Computers have been used to solve many
problems and improve almost every aspect of our everyday
lives. However, there is a fatal flaw in trying to directly solve
the Collatz Conjecture with a computer program.

In this paper, we will demonstrate that writing a program to
prove or disprove the Collatz Conjecture is undecidable – that
is, a computer program can’t directly solve the problem. This
isn’t to say that tools can’t be made to help with a solution,
because programs can help test assumptions, find patterns,
and so on. It also doesn’t mean that the Collatz Conjecture
itself is undecidable, but rather that directly solving it with a
program is simply not possible.

The rest of this paper is organized as follows. First, we will
discuss some of the related work that has been done on the
Collatz Conjecture in the field in Section 2. Next, we will
describe the conjecture in depth in Section 3, followed by a
description of the Halting Problem in Section 4, an important
ingredient for our discussion. We will then show in Section 5
that none of the potential ways to prove or disprove the Col-
latz Conjecture are feasible to do on a computer, even given
infinite memory and processor time. Finally in Section 6, we
will end the paper with some conclusions and implications
for trying to solve this problem.

2 Related Work

There have been dozens if not hundreds of publications on the
Collatz Conjecture, far too many to cover here. Instead, we
will focus on publications which use programs as part of the
process to either prove, disprove, or garner more information
about this problem. First, Honda, Ito, and Nakano created
a program to verify that various numbers would return to 1.
Their approach was able to verify 1.3112 64-bit numbers per
second, for a total of 230 but they were able not able to prove
or disprove the conjecture [2]. Others have used computer
programs to verify much higher numbers, up to 268, with the
same results of them all eventually returning to 1 [3].

In a fairly novel approach, Perez attempts to prove that the
Collatz Conjecture is false, by writing a program that finds in-
tegers with ever-greater stopping times. He reasons that since
the algorithm does not halt and continues to find larger stop-
ping times, there must be a number which takes infinite time
to stop [4]. This is an interesting insight, but as discussed in
Section 4, we cannot know if such an algorithm will halt.

Also, Gurbaxani attempted to create different programs for
different modifications of the Collatz Conjecture, with the
hope of both finding other interesting problems and giving
some insight into whether or not the conjecture is true [5].
Mirkowaska and Salwicki [6] use programming to attempt to
show that the Collatz Conjecture itself is undecidable, but do
not examine the undecidability of creating a program to di-
rectly solve it. Other computational techniques, such as linear
search and data visualization, have also been used for the pur-
pose of garnering more information about this problem [6].
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3 The Collatz Conjecture

The Collatz Conjecture is a well-known and currently un-
solved program in Mathematics. It is also known by many
other names, such as the 3n+1 problem, the Ulam Conjec-
ture, and the Syracuse Problem, to name a few. Regardless of
what you call it, the Collatz Conjecture is a seemingly simple
problem with unexpectedly complex behavior that has eluded
any attempts by amateur and professional mathematicians to
prove it true or false for decades.

Algorithm 1: Process for the Collatz Conjecture.
function Collatz(n)
while True do

if n is odd then
n = 3n + 1

end
else

n = n / 2
end

end

As seen in Algorithm 1, the process/formula for the Collatz
Conjecture is quite straightforward. Given some number n,
we check if it is even or odd. If it is odd, we get a new number
by multiplying n by 3 and adding 1. If it is even, we get a
new number by dividing n by 2. We then repeat this process
forever. The Collatz Conjecture states that for every positive
integer, repeating this process over and over (as illustrated by
the while True) will eventually result in repeating the numbers
1, 4, 2 infinitely. For example, let’s start with 13 and see what
happens:

• 13 is odd, so 3*13 + 1 ⇒ 40
• 40 is even, so 40/2 ⇒ 20
• 20 is even, so 20/2 ⇒ 10
• 10 is even, so 10/2 ⇒ 5
• 5 is odd, so 3*5 + 1 ⇒ 16
• 16 is even, so 16/2 ⇒ 8
• 8 is even, so 8/2 ⇒ 4
• 4 is even, so 4/2 ⇒ 2
• 2 is even, so 2/2 ⇒ 1
• 1 is odd, so 3*1 + 1 ⇒ 4
• 4 is even, so 4/2 ⇒ 2
• 2 is even, so 2/2 ⇒ 1
• {1,4,2} repeats forever

This {1,4,2} loop is often simplified to the statement that
Collatz(n) eventually arrives at the number 1.

We can refer to showing that the Collatz Conjecture is either
True or False (proving or disproving it) as “solving” the prob-
lem. In order to solve it, one of these three things would need
to be achieved:

1. Prove that all positive integers eventually arrive at 1
when the formula is repeatedly applied to them.

2. Prove that there is some positive integer s which will
grow infinitely when the formula is repeatedly applied
to it.

3. Prove there is some positive integer s which results in a
loop that does not include 1 when the formula is repeat-
edly applied to it.

It has been verified via computer programs that this conjec-
ture holds true for all positive integers up to at least 268 (that
is, roughly 295 quintillion) [3], and many attempts to prove
or disprove the Collatz Conjecture use programming in some
way, as discussed in Section 2. Although potentially useful
tools can be created via programming, there is one major ob-
stacle to directly solving the Collatz Conjecture using a pro-
gram – the Halting Problem.

4 The Halting Problem

With some programs, we can know for sure that they halt,
or eventually terminate and stop running. For example, a
program that does nothing but adds two numbers together is
guaranteed to halt. However, this is not true in the general
case. The Halting Problem is the problem of determining,
given some program and some input to that program, whether
the program will ever halt, or just continue to run forever.

As proven by Alan Turing, this problem is undecidable [7].
That is to say, it is impossible to know whether programs
will stop running or not in the general case. We don’t typ-
ically encounter this problem in our own code, since we pur-
posely write most programs to eventually terminate, specifi-
cally avoiding infinite loops and other similar issues. How-
ever, when making programs to model real-world scenarios,
such as mathematical properties of certain numbers, we can’t
always be sure that they will terminate.

In fact, the Halting Problem being undecidable directly leads
to it being impossible for there to be an algorithm which de-
cides whether a particular statement about natural numbers is
true or not. This is because if we had a particular input and
a particular program, and a proposition about whether or not
it would halt, it could be converted into an equivalent state-
ment about natural numbers. Then, if an algorithm could find
whether or not that statement about natural numbers is true, it
could also determine whether the original program halts, thus
violating that the Halting Problem is undecidable. This is a
key insight for the upcoming discussion.

5 Proving that The Collatz Conjecture is Un-
decidable Using A Computer Program

So how does this relate back to the Collatz Conjecture? Re-
call that in order to solve the problem, we either need to
prove that it’s true for all positive integers, prove that a num-
ber grows infinitely, or prove that a number results in a loop
which doesn’t include the number 1.



5.1 Initial Thoughts from Intuition

Let’s start by looking at these three possible solutions from an
intuitive standpoint. In order to prove that the Collatz Con-
jecture holds true for all positive integers using a computer
program, we would need to test all positive integers. As there
are an infinite number of them, such a program would never
finish, even with unlimited resources.

Similarly, let’s say that we find a value of n that does in fact
grow forever. In order to verify our solution via a computer
program, we would have to run the program forever. As we
cannot do this, and in fact cannot even know if a program is
running forever, we cannot verify the solution.

Finally, to determine if a value of n just loops forever (without
arriving at 1), we could also need to run the program forever
- the loop could consist of infinite numbers, or just too many
numbers to parse in a feasible amount of time, and we have no
idea how far towards infinity a potential solution number may
lie. In addition, we are unable to verify that a number does
not loop forever, as this would require knowing if it does grow
forever (if it doesn’t loop, it must return to 1 or grow forever).
At the very least, mathematicians have calculated that such a
loop must consist of at least 186 billion numbers [3], and we
know it is not in the first 268 of them. As such, even if there
is a solution number that starts a loop, directly finding one
programmatically seems incredibly improbable.

Let us now leave intuition behind and prove that none of these
three solutions are feasible via computer program.

5.2 Proving we Can’t Prove the Collatz Conjecture

The proof for determining that we can’t prove the Collatz
Conjecture is true via a program is quite straightforward. In
order to prove it is true, we have to write a program which
shows it is true for all positive integers - of which there are
an infinite amount. Even if we use shortcuts to knock out
some numbers, such as not bothering to test any powers of 2
since those are just repeatedly divided by 2 until they hit 1,
it still leaves an infinite number of positive integers. Addi-
tionally, infinitely large numbers cannot even be stored on a
computer, much less used in mathematical calculations. As
such, no matter how much memory or processing time we
have, we can never test every single possible positive integer.
Therefore, writing a program which verifies that the Collatz
Conjecture holds true for all positive integers is not possible.

5.3 Proving we Can’t Prove That a Number
Grows Forever

We assert that determining if a number grows forever is an
impossible task for a computer program. In order to prove
this, we will use the classic method of Proof by Contradiction,
specifically by reducing the Halting Problem to this problem
and showing that if we solve the latter, we must be able to

solve the former. First, let’s assume that we have created a
function, grows(n), that for any positive integer n returns true
if it grows forever when applying the formula in the Collatz
Conjecture to it, and false if it eventually reaches 1 instead.

Algorithm 2: The HaltTest function, which will run
infinitely whenever grows(n) returns true, and imme-
diately halt whenever when grows(n) returns false.

function HaltTest(n)
if grows(n) == True then

while True do
end

end
else

return
end

Using this function, we can then construct HaltTest(n), the
algorithm shown in Algorithm 2. Basically, HaltTest calls
grows(n) using the same value, n, that it was given. If
grows(n) returns true, HaltTest then infinitely loops, mean-
ing it never halts. On the other hand, if grows(n) returns
false, HaltTest immediately halts instead. This is our reduc-
tion from the Halting Problem to the problem of finding a
number that grows infinitely according to the formula used in
the Collatz Conjecture. Therefore, if grows(n) is able to de-
termine if a number grows forever, it is also able to solve the
problem of whether or not the program will halt.

That is to say, assuming the existence of the function
grows(n), we can determine whether or not the original pro-
gram halts, thereby solving the halting problem. Since the
Halting Problem is undecidable, this means that we have a
contradiction, and the grows(n) function cannot exist! As
such, creating a program to successfully test whether or not a
given positive integer grows infinitely must be impossible, so
verifying that a potential solution to the Collatz Conjecture
does so is also impossible.

5.4 Proving we Can’t Prove That a Number Loops
Forever

We assert that determining if a number loops forever without
including the number 1 is also an impossible task for a com-
puter program. In order to prove this, we will again use the
classic method of Proof by Contradiction, specifically by re-
ducing the Halting Problem to this problem as well. In fact,
the proof for this is virtually the same as when trying to find
a number that can grow forever, but we will walk through it
for completeness. First, let’s assume that we have created a
function, loops(n), that for any positive integer n returns true
if applying the formula in the Collatz Conjecture to it creates
a loop of numbers not including 1, and false if it eventually
arrives at 1 instead.

Using this function, we can construct HaltTest2(n), the al-
gorithm shown in Algorithm 3. Basically, HaltTest2() calls



Algorithm 3: The HaltTest2 function, which will
run infinitely whenever loops(n) returns true, and
immediately halt whenever when loops(n) returns
false.

function HaltTest2(n)
if loops(n) == True then

while True do
end

end
else

return
end

loops(n) using the same value, n, that it was given. If loops(n)
returns true, HaltTest2() then infinitely loops, meaning it
never halts. On the other hand, if loops(n) returns false,
HaltTest2() immediately halts. Notice that this means we
have created a reduction from the Halting Problem once again
– if loops(n) solves the problem of determining if a num-
ber loops without arriving at 1, it also solves the problem of
whether or not the program will terminate.

That is to say, assuming the existence of the function loops(n),
we can determine whether or not the original program halts,
thereby solving the halting problem. Since the Halting Prob-
lem is undecidable, this means that we have a contradiction
and the loops(n) function cannot exist! Therefore, creating a
program to successfully test whether or not a given positive
integer loops infinitely must also be impossible. Also note
that we cannot verify that a number does not loop infinitely
in all cases, since it may grow forever, which offers more ev-
idence that loops(n) cannot exist.

5.5 Wrapping it all Up

As we have seen, it is impossible to write a computer program
to find any of the three solutions provided in Section 3 – veri-
fying all positive integers arrive at 1, finding a positive integer
which grows forever, or finding a loop that does not arrive at
1. It logically follows that it is impossible to solve the Collatz
Conjecture directly using only a computer program.

One potential counterargument to this is that we can deter-
mine if grows(n) or loops(n) is valid for some values – after
all, this has essentially been done for all values from 1 to 268,
as previously mentioned. This parallels the fact that we can
determine if some programs will halt. However, just as we
can determine if some programs halt but not all programs, we
can determine if some values would return true or false for
grows(n) or loops(n) – but not all values. To confirm this,
let’s think about this in a bit more depth.

First, let us consider grows(n). It is very important to note
that if a number is found for which grows(n) returns true,
there must be an infinite number of numbers for which grow
returns true! To see this, assume a number x is found that
grows forever. If x is odd, that means that 3x + 1 must also

Figure 1: A tree showing the numbers that must also grow infinitely
if some number x grows infinitely, depending on whether each num-
ber is even or odd. Note that if a number is odd, causing us to do
3x+1 on it, the resulting number will always be even.

.

grow forever. If x is even, that means that x/2 must also grow
forever. This then repeats for the new number, as shown in
Figure 1. As such, there are an infinite number of numbers
which must be verified for grows(n) to return true for any
number, which takes us back to the program never halting!

Also, let us consider loops(n). Recall that loops(n) can de-
termine if any positive integer will loop without arriving at a
value of 1. Also recall that mathematicians have calculated
that if a loop exists, it must consist of at least 186 billion
numbers. In theory, that means that we might only need to
run loops(n) for 186 billion different values – which could be
feasible. However, in order to only run loops for a value that
is a solution, the solution must already be known. Otherwise,
as is the case here, we are looking at the set of all positive
integers in general, which fits the Halting Problem criteria.
After all, a function that determines if a positive integer loops
without hitting 1 must be able to verify this for any positive
integer. To this end, we need to realize that we cannot verify
that a number does NOT loop in finite time - it could be grow-
ing infinitely instead, further showing creating this function is
not possible!

Another counterargument comes from the idea of Fermat
Primes. A Fermat Prime is a number of the form 22

m

+1 that
is prime. One might construct a function fermat(n) which
determines if a number is a Fermat prime. If we plug in
this function as we do with grows(n) and loops(n), it seems
as those a solution to this must also be impossible. How-
ever, there are only 5 known Fermat primes (3,5,17,257, and
65537). Euler was able to show in 1732 that m = 6, which
is 4,294,967,297, is not prime (it is evenly divisible by 641
and 6,700,417), and it is postulated that no higher number of
the form 22

m

+ 1 is prime either. What’s important to note
is that although finding all the factors of 4,294,967,297 was
an incredibly hard problem back then, it is a computationally
trivial problem today. In fact, it can be done in just 7 (and
possibly less) lines of Python code today, and takes less than
a second to compute.



As such, given our modern tools, it can be said that the idea
that all non-negative integer values of m are prime has a triv-
ial counterexample. The same is true for many other claims
as well – all numbers are even, all numbers divisible by 3
are also divisible by 4, and so on. These problems are so
relatively simple that they also have easy counterexamples.
However, the Collatz Conjecture does not have a trivial coun-
terexample (as evidenced by the community working on this
for decades and having tested 268 different numbers), with
proving it false requiring potential clashes with infinity. This
is a key difference that makes the Halting Problem apply to
the Collatz Conjecture but not something like Fermat Primes.

6 Conclusion

In conclusion, the Collatz Conjecture has been worked on for
decades, but a proof of whether it holds true or not has proven
to be incredibly elusive. Many have turned to computer pro-
grams to try to solve the problem, often by trying to find a
counterexample that makes the conjecture be false, but also
verifying that it holds true for many numbers. In this work,
we have shown that even with computers much more power-
ful than what we have now, creating a program that directly
proves or disproves this conjecture is impossible. To verify
that all positive integers arrive at 1, we would have to ver-
ify an infinite amount of numbers using a computer program,
which is impossible because the program could never test ev-
ery single number when there are an infinite amount of them.
If we were able to create a function that determined if a pos-
itive integer grew forever or created a loop which doesn’t ar-
rive at 1, it would allow us to solve an impossible problem
(the Halting Problem) since both of these functions could re-
quire an infinite amount of processor time. As such, directly
solving this problem using a computer program is impossible.

Note that this conclusion does not solve the Collatz Conjec-
ture or imply that it is undecidable - just that we cannot create
a program to directly solve it. Mathematicians have previ-
ously used programs to look for patterns of numbers, which
they then use to construct induction-based proofs. This has
an interesting implication for solving the problem - although
tools could still potentially be made using computer program-
ming, any proof or disproof of the Collatz Conjecture will
need to be provided from a purely mathematical standpoint,
and not a programming one. We hope this insight into the
Collatz Conjecture will help the mathematical community re-
focus its efforts and one day come up with a solution for this
problem. It may also indicate that any statement requiring
proof by induction to be proved true cannot directly be solved
by a computer due to requiring the verification of infinite val-
ues, but a deeper dive into that idea is a task for another time.
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