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ABSTRACT 

Many studies exist pertaining to medical data, but the 

detection of outliers in medical data through machine 

learning is a new field of research. As such, there is no 

documentation currently available on the accuracy of 

diagnosis using outlier detection methods. Determining 

which method is most effective in detection of outliers of 

medical diagnoses would allow for an increase in patient 

survival rates. In the current study, the accuracy of four 

outlier detection algorithms (Isolation Forest, Split-

Selection Forest Criteria, Local Outlier Factor, and Cluster 

Based Local Outlier Factor) is compared using the Area 

Under the Receiving Operating Characteristics Curve. 

Findings show that the predictive capacity of the Isolation 

Forest and Split-Selection Forest Criteria models was 

100%, or equivalent once model predictions were inverted; 

both Local Outlier Factor variants were found to be less 

effective. This demonstrates that the Isolation Forest and 

Split-Selection Forest Criteria algorithms are capable of 

effectively detecting outliers within medical data. We 

speculate that this approach might be applied to sets of 

patient chart data sorted by diagnosis code, for the purpose 

of comparing estimated outlier rate to estimated rates of 

misdiagnosis by diagnosis code. Limitations related to 

technological constraints and further study 

recommendations are discussed. 
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1.  Introduction 
 

Physicians strive to provide their patients with the best 

possible medical care. This desire to help those in need has 

pushed the scientific community to continually research 

better treatments and medications. However, this focus on 

the advancement of technology and pharmacology, while 

necessary, ignores the more basic -- yet equally important 

-- issue of patient information management. For over a 

century, medical science has provided us with innovative 

technologies to identify illnesses and insights into the 

pathogens behind disease, but to effectively defend against 

maladies, it is important to correctly diagnose them. Patient 

outcomes depend upon doctors accurately diagnosing 

ailments and providing the indicated treatment, making the 

accuracy of this process critical.  

  

Rates of diagnostic accuracy might be identified by 

applying outlier detection methods to patient chart data. 

Outliers are data objects which differ significantly in some 

respect from comparable data objects [1]. Identifying these 

outliers within a dataset of medical information may allow 

for retrospective detection of possible diagnostic errors, 

which may lead to improvements in accuracy for 

diagnostic processes. Current estimates of the overall rate 

of misdiagnosis in clinical practice range from 11% [2] to 

as high as 38% [3]. Such diagnostic errors result in 

significant disability and mortality among patients [2]. 

These estimates suggest that many diagnostic errors are 

related to a small subset of nosological entities. We 

suppose this might suggest clusters of outliers, and note 

that such clustering leads to increased difficulty in 

detection [4], [5].  

 

Although diagnostic accuracy is vital to patient survival, 

there are no extant publications documenting the accuracy 

of diagnoses using outlier detection. Furthermore, using 

outlier detection in medical data is a new development 

within this field, as seen in the work of Samariya and 

colleagues, published as recently as April of 2023 [6]. 

Samariya et al. compared the Isolation Forest and Local 

Outlier Factor algorithms. Performance was measured by 

the Area Under the Receiver Operating Characteristics 

Curve (AUC-ROC Curve) and determined that the 

Isolation Forest algorithm was the favorable method.  

 

With this paper, we intend to expand upon this previous 

work by comparing these outlier detection algorithms to 

variants thereof devised specifically to address the 

phenomenon of clustered outliers. We will use the AUC-

ROC Curve measure to determine which of the following 

algorithms functions most effectively in identifying 

outliers: Isolation Forest (iForest), Split-Selection Criteria 

Forest (SciForest), Local Outlier Factor (LOF), or Cluster-

Based Local Outlier Factor (CBLOF). 

 

 

 



2.  Methods  

 
To measure the effectiveness of the four algorithms, their 

performance will be compared through the application of 

two sets of medical data available from the Stony Brook 

University Outlier Detection Datasets (ODDS) repository: 

Lymphography (Lympho) and Thyroid Disease 

(Annthyroid). Each dataset contains known outliers and 

has been used in previous studies involving outlier 

detection. 

 

2.1 Datasets 
 

Lympho: We used the Lympho dataset [7] found in the 

ODDS Repository. This data was obtained from the 

University Medical Centre, Institute of Oncology, 

Ljubljana, Yugoslavia. The set consists of 148 

observations for each of 19 variables describing the 

presence and condition of tumors in patients’ lymph nodes. 

The classification variable takes four possible values, of 

which there are 81, 61, 4, and 2 instances in the dataset. 

The latter two classes are taken as outliers, for a total of six 

outlier instances. 

 

Annthyroid: We used the Annthyroid dataset [8] found in 
the ODDS Repository. This data was obtained from 

Garavan Institute in Sydney, Australia. The set consists of 

7,200 observations for each of 21 attributes (15 binary, 6 

continuous) among 3 classes which were meant to classify 

thyroid abnormalities in patients. The 534 instances which 

classify as either hypo- or hyper-functional are taken as 

outliers. 

 

2.2 Outlier Detection Algorithms 
 

The Local Outlier Factor and Cluster-Based Outlier Factor 

methods were computed using Python 3.12.0 [9]. The 

Isolation Forest and Split-Selection Criteria Forest were 

computed using the IsoTree package in R Statistical 

Software (v4.1.2) [10]. 

 

Isolation Forest [11], [12], [13]: Isolation Forest (iForest) 

is an outlier detection procedure introduced by Liu and 

colleagues in 2008 [11]. In contrast to earlier outlier 

detection methods, which first build a profile of ordinary 

instances within a dataset and then flag those instances 

which deviate from that profile, the Isolation Forest starts 

by isolating the anomalous instances from the rest of the 

dataset. The procedure is divided into two stages: Training, 

in which a forest of Isolation Trees (iTrees) is constructed; 

and Evaluation, in which the iTrees are compared to 

determine which instances are anomalous. 

 

The Training stage consists of building an iForest, a set of 

iTrees. An iTree is built by sampling ψ instances from the 

dataset, and then repeatedly partitioning the dataset. At 

each partitioning step, an attribute of the dataset is 

randomly selected, and a split-point is randomly selected 

from the selected attribute’s range. The dataset is then split 

into two subsets; the left subset, containing all instances for 

which the value of the selected attribute is less than the split 

point, and the right subset, containing all instances for 

which the value of the selected attribute is greater than or 

equal to the selected attribute. This partitioning step is 

applied repeatedly, until either all sampled instances are 

isolated – partitioned into a subset containing no other 

instances – or a preset tree height limit (by default, log₂(ψ)) 

[11] is reached. 

 

In the Evaluation stage, the path length h(x) – the number 

of partitions required to isolate an instance – is calculated 

for every instance x, using the partitions defined for each 

iTree in the forest. For those iTrees in which the instance 

reaches a terminal node without becoming isolated, the 

remainder of the path length is estimated with (1) [11], 

where the argument n is the number of instances contained 

in the terminal node, and H(i) is the harmonic number 

function, estimated by ln(i) + 0.5772156649. 

 c(n) = 2H(n - 1) – (2(n – 1)/n) (1) 

 

The expected path length E(h(x)) for each instance x is then 

determined by calculating the average path length h(x) 

across every iTree in the forest. The instance x is then given 

an anomaly score, according to (2) [11], where argument x 

is the instance being scored, and argument n is the total 

count of instances in the dataset being evaluated. The 

anomaly score is interpreted such that instances with scores 

very near 1 are very likely to be anomalous and instances 

with scores significantly less than 0.5 are very likely to not 

be anomalous [11]. Should it turn out that every instance in 

the dataset has an anomaly score near 0.5, then there are 

very likely no anomalous instances in the dataset [11]. 

 𝑠(𝑥, 𝑛) = 2
−

𝐸(ℎ(𝑥))
𝑐(𝑛)  (2) 

 

Split-Selection Criteria Forest [4]: The Split-Selection 

Criteria Forest (SCiForest) is a variant of the iForest 

method introduced by Liu and colleagues in 2010 [4]. It 

has been altered to better detect clusters of anomalies, 

outlier data points which are very close to one another – 

hence, difficult to isolate – yet far from the majority of 

points in the dataset, and hence still outliers. This is 

accomplished by accounting for multiple attributes during 

each partitioning step, while optimizing both the split-point 

and the attributes factored for anomalousness. In a manner 

of speaking, the algorithm looks at each data point from 

many angles and chooses the angle from which it appears 

strangest. Following is a detailed explanation. 

 

SCiForest represents two major changes from iForest. The 

first is that, rather than randomly selecting a single attribute 

at each partitioning step, q such attributes are randomly 

selected, from which several hyperplanes f of the dataset 

are constructed according to (3) [4], wherein x is an 

instance in the dataset X’, Q is the set of q randomly 

selected attributes, σ() is the usual standard deviation 

function, cⱼ is a coefficient randomly selected from [-1, 1], 



p is the optimal split-point of the hyperplane f for 

maximizing the hyperplane’s gain in standard deviation, 

calculated per (4), and j subscripts indicate reference to the 

jth attribute of the dataset. The selection of an optimal split 

point p, rather than a random selection of split point, is the 

second major change in SCiForest. Additionally, the 

hyperplane itself is also optimized for gain in standard 

deviation, by generating τ hyperplanes at each partitioning 

stage and selecting the best. 

 𝑓(𝑥) = ∑ 𝑐𝑗
𝑥𝑗

𝜎(𝑋𝑗
′)

− 𝑝𝑗∈𝑄  (3) 

The aforementioned gain in standard deviation is defined 

in (4), where Y = f(x) is a hyperplane of the dataset, l and r 

superscripts are used to denote the left and right partitions 

of Y, σ() is the usual standard deviation function, and avg() 

is the usual arithmetic mean function. 

 𝑠𝑑𝑔𝑎𝑖𝑛(𝑌) =
𝜎(𝑌)−𝑎𝑣𝑔(𝜎(𝑌𝑙),𝜎(𝑌𝑟))

𝜎(𝑌)
 (4) 

 

Local Outlier Factor: The Local Outlier Factor (LOF) 

algorithm is a data mining and machine learning technique 

designed for outlier detection. It was first introduced by 

Breunig and colleagues in 2000.  It assesses the local 

density deviation of data points with respect to their 

neighbors to identify anomalies. 

 

LOF calculates a score for each data point where a higher 

score indicates a higher likelihood of being an outlier. First, 

the density of data points is measured. LOF calculates the 

density with respect to its k-nearest neighbor. k-distance, 

the distance from a data point (p) and its k-nearest neighbor 

o, is calculated per (5) [13]. 

 𝑑(𝑝, 𝑜) = √∑ (𝑝𝑡 − 𝑜𝑡)2𝑛
𝑡=1  (5) 

 

In this context, the k-Nearest Neighbors (kNN) of data 

point p encompass any data point q within a distance not 

exceeding the k-distance from p. These k-Nearest 

Neighbors of p collectively compose the k-distance 

neighborhood of p [14] as outlined in (6). 

 𝑁𝑘−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝)(𝑝) = {𝑞 ∈ 𝐷/{𝑝}|𝑑(𝑝, 𝑞) ≤ 𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝)} (6) 

 

Next, LOF will consider reachability distance. This says 

the reachability of point p with respect to its neighbor o is 

the maximum of the distance between p and o and the local 

density of o as seen in (7) [14]. 

 𝑟𝑒𝑎𝑐ℎ − 𝑑𝑖𝑠𝑡𝑘(𝑝, 𝑜) = max {𝑘 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑜), 𝑑(𝑝, 𝑜)} (7) 

 

When the average reachability distance is greater 

(indicating distant neighbors from the point), there's a 

lower density of points around that specific point, referred 

to as the Local Reachability Distance (LRD). This metric 

provides insight into the distance between p point and its 

nearest cluster of points. Lower LRD values suggest that 

the closest cluster is distant from the point itself [14]. 

 𝐿𝑟𝑑𝑀𝑖𝑛𝑃𝑡𝑠(𝑝) =
|𝑀𝑖𝑛𝑃𝑡𝑠(𝑝)|

∑ 𝑟𝑒𝑎𝑐ℎ−𝑑𝑖𝑠𝑡𝑀𝑖𝑛𝑃𝑡𝑠(𝑝,𝑜)0∈𝑁𝑀𝑖𝑛𝑃𝑡𝑠(𝑝)

 (8) 

 

Cluster-Based Local Outlier Factor [15]: The Cluster-

Based Local Outlier Factor (CBLOF) algorithm is similar 

to the Local Outlier Factor algorithm. It is designed to 

enhance outlier detection in datasets where there are 

clusters of information. CBLOF combines the ideas of 

LOF with the idea of cluster-based mining. By doing this 

the algorithm can provide a better way of picking out 

outliers from the dense and sparse regions. 

 

CBLOF first will create clusters in the dataset by using k-

means. Then it estimates the density of each cluster. Then 

it will use the reachability distance for each cluster. The 

algorithm determines outliers by figuring out the distance 

between the center of the cluster to each data point. CBLOF 

can decipher local outliers within each cluster and global 

outliers which are outliers that deviate from the entire 

dataset. Points that are outliers outside of a small dataset 

may have their outlier factor score increased, where points 

outside a large cluster may have their score decreased. 

Cluster-Based Outlier Factor is beneficial to use when 

dealing with large datasets that may have many different 

size clusters. When comparing it to LOF, LOF may 

misclassify points within dense clusters whereas CBLOF 

considers clusters and their structures. 

 

2.3 AUC-ROC Curve Measure 
 

Each of these outlier detection algorithms is considered a 

classification method. Within machine learning, the 

performance of classification methods is commonly 

analyzed using the Area Under the Curve for Receiver 

Operating Characteristics (AUC-ROC) measure. 

 

In order to discuss the AUC-ROC Curve, it is important to 

first understand the confusion matrix. The confusion 

matrix is created as a result of four possible outcomes from 

a binary prediction. 

 

1) True negative (TN): where the algorithm correctly 

predicts a negative class (0) as a negative class (0). 

2) False negative (FN): where the algorithm incorrectly 

predicts a positive class (1) as a negative class (0). 

3) True positive (TP): where the algorithm correctly 

predicts a positive class (1) as a positive class (1). 

4) False positive (FP): where the algorithm incorrectly 

predicts negative class (0) as a positive class (1). 

 

These outcomes are used to identify the true positive rate 

(TPR) and false positive rate (FPR). The true positive rate 

is the proportion of positive data points correctly identified 

as positive in relation to the total number of data points. 

When the TPR is higher, fewer positive data points are 

misidentified. This value is calculated as follows in (10). 

 TPR=TP/(TP+FN) (10) 

 

The false positive rate is the proportion of negative data 

points that are misidentified as positive in relation to the 

total number of data points. When the FPR is higher, the 



more negative data points are misclassified. This value is 

calculated as follows in (11). 

 FPR=FP/(FP+TN) (11) 

 

The values for the true positive rate and false positive rate 

are computed across various thresholds and plotted on a 

single graph in which the false positive rate delineates the 

horizontal axis, and the true positive rate marks the vertical 

axis. The resulting curve is the Receiver Operating Curve 

(ROC). Once the curve is graphed, the area below the curve 

is shaded. This shaded area beneath the ROC constitutes 

the AUC-ROC measure [16]. 

 

The AUC-ROC is bounded between zero and one 

(inclusive) and is used to determine how well an algorithm 

(model) distinguishes between classes. The closer the AUC 

value is to 1, the better the model is at correctly predicting 

classes. Note that an AUC =1 marks a perfect classifier. 

Alternatively, if the AUC value is close to 0, the model 

consistently identifies positive classes as negative classes 

and vice versa. An AUC value close to zero remains useful 

as the decisions are consistently switched, allowing for 

simply inverting the output of the algorithm in order to 

obtain a good model. The only undesirable outcome is 

when AUC = 0.5 as this would mean the model has no 

capacity to distinguish between positive and negative 

classes. 

 

 

3.  Results and Discussion 
 

3.1 Lympho Results 
 

Our results obtained by analyzing the Lympho dataset with 

the four selected outlier detection methods are reported in 

Table I and Figs. 1 through 4. Our findings indicate that the 

Isolation Forest and Split-Selection Criteria Forest 

algorithms reliably classified outliers. The “perfect” AUC 

scores should be understood as the result of these models 

converging on a single (accurate) threshold value. We also 

find that the Local Outlier Factor method over-estimates 

the number of outliers. Curiously, the Cluster-Based Local 

Outlier Factor method would seem to have a tremendous 

false positive rate, judging by its AUC score, yet it predicts 

the correct quantity of outliers. 

 

3.2 Annthyroid Results 
 

Our results obtained by analyzing the Annthyroid dataset 

with the four selected outlier detection methods are 

reported in Table II and Figs. 5 through 8. Our findings 

again indicate that the Isolation Forest and Split-Selection 

Criteria Forest algorithms reliably classified outliers, 

though again, we note that the “perfect” AUC scores 

should be understood as the result of these models 

converging on a single (accurate) threshold value. We find 

that once again the Local Outlier Factor method 

overestimates outlier count. We again observe the Local 

Outlier Factor method resulting in a significantly greater 

AUC score than the Cluster-Based Local Outlier Factor, 

which again appears to a problem of false positives, per the 

AUC score. Despite this, we note that the CBLOF method 

significantly underpredicted outlier count for this dataset. 

 

3.3 Tables and Graphs 
 

Table 1 

Lympho Results 
Detection 

Method 

Results 

Outliers 

Count 

Inliers 

Count 

Outliers 

% 

AUC 

Score 

LOF 15 133 10.14% 0.9871 

CBLOF 6 142 4.05% 0.0319 

Iso Forest 6 142 4.05% 1.0000 

SCiForest 6 142 4.05% 1.0000 

 

 

Figure 1 

ROC Curve for Local Outlier Factor, Lympho Dataset 

 
 

 

Figure 2 

ROC Curve for Cluster-Based Local Outlier Factor, 

Lympho Dataset 

 
 

  



Figure 3 

ROC Curve for Isolation Forest, Lympho Dataset 

 
 

 

Figure 4 

ROC Curve for Split-Selection Criteria Forest, Lympho 

Dataset 

 
 

Table 2 

Annthyroid Results 
Detection 

Method 

Results 

Outliers 

Count 

Inliers 

Count 

Outliers 

% 

AUC 

Score 

LOF 720 6480 10.00% 0.7373 

CBLOF 359 6841 4.99% 0.3540 

Iso Forest 534 6666 7.42% 1.0000 

SCiForest 534 6666 7.42% 1.0000 

 

 

 

 

 

 

 

 

 

Figure 5 

ROC Curve for Local Outlier Factor, Annthyroid Dataset 

 
 

 

Figure 6 

ROC Curve for Cluster-Based Local Outlier Factor, 

Annthyroid Dataset 

 
 

 

Figure 7 

ROC Curve for Isolation Forest, Annthyroid Dataset 

 



Figure 8 

ROC Curve for Split-Selection Criteria Forest, 

Annthyroid Dataset 

 
 

 

3.  Conclusion 
 

We find that the Isolation Forest method, as well as its 

variant, the Split-Selection Criteria Forest method, reliably 

detect anomalous instances across two sets of medical data. 

We find that the Local Outlier Factor and Cluster-Based 

Local Outlier Factor methods perform less admirably. 

Having confirmed the efficacy of the isolation tree-based 

methods, we anticipate a future study employing these 

same methods to analyze large sets of patient chart data, 

such as the MIMIC databases at Massachusetts Institute of 

Technology’s Laboratory for Computational Physiology, 

to test the theory that when sorted into subsets by diagnosis 

code, those subsets will have outliers at rates proportional 

to previously-published per-condition rates of 

misdiagnosis. 
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