
CELLULAR AUTOMATA AS DETERMINISTIC FINITE-STATE MACHINES

Benjamin Phillips , Brandon Packard
Pennsylvania Western University - Clarion

phi53809@pennwest.edu, bpackard@pennwest.edu

ABSTRACT

The analysis of cellular automata has been long hindered by
computational irreducibility. We can understand the simplis-
tic rules that generate the larger emergent phenomena, but we
struggle to find methods of analysis that allow us to predict
the behavior of these cellular automata.

In this paper, we seek to generate a new methodology using
the structures of finite-state machines in order to numerically
analyze cellular automata by their structures rather than by
their behaviors. We do this by taking each state of the au-
tomata as a collection of binary values, and feeding them into
counting machines with final states “Alive” and “Dead” to
generate the next state.

1 Introduction

The notion of emergence is one that resonates deeply within
many fields. The observation of complicated phenomena aris-
ing from simplistic rule sets has a profound impact on the
empirically reductive methods that philosophers and scien-
tists have employed for centuries. Emergent phenomena are
demonstrated evidences of a more holistic science where one
cannot, by looking at the cogs, pipes, and wires of a machine,
tell you what wonders it might perform.

The analysis of emergent phenomena generates a problem.
The complexity of these systems make them almost impossi-
ble to predict a far future state from the given rules.

We see this same sort of problem in the world of chaos theory.
Even with a known initial state, and a deterministic machine,
our predictive capabilities falter the further we go from that
initial state. Pendulums are a perfect example of this type
of behavior. With a single pendulum in a vacuum we can
predict its motion with almost perfect accuracy for the rest
of time knowing only its length, the gravitational accelera-
tion, and the initial angle. However, when you place a second
pendulum, with its axis as the bottom of the first, the behav-
ior becomes incredibly complex. With only one more set of
variables, it is almost impossible to accurately determine the
behavior of the double pendulum.

Finding methodologies to prevent the need for approximate
measurements is critical for finding the long term behavior
patterns of emergent, or chaotic, phenomena.

In this paper, we have attempted to generate a possible means
of mathematically analyzing one of the most beautiful repre-
sentatives of emergence: cellular automata.

2 Related Work

Other papers have worked on defining the properties of emer-
gence within cellular automata. Hanson in [1] describes an
emergent phenomenon as a property “that arises out of the
system’s own dynamical behavior, as apposed to being intro-
duced from outside”.

Hanson’s analysis involves taking a collection of rules and
pulling out given emergent phenomena such as what he calls
, “synchronization”.

The paper “Visualizing Computation in Large-Scale Cellular
Automata”[2] delves deep into this topic from a slightly dif-
ferent angle. They aim to analyze automata through the use
of the space-time diagrams of different rules. They utilized a
process known as “course-graining” to determine which au-
tomata exhibited “interesting behaviors at multiple scales.”
Another paper “Problife: A Probabilistic Game of Life” [3]
delves into the topic of probabilistic cellular automata that
we describe in the “Reasons for the Method” section. They,
rather than utilizing the method described in this paper, use
the strategy of giving each cell in the automata a continuous
value [0,1] rather than a discrete binary value.

Each of these papers attempts to tackle the structure and be-
havior of cellular automata. Our is, however, unique in its
methodology.

3 Cellular Automata

A cellular automaton is a discrete structure that adapts over
a given unit time according to some set of rules. It could
be more generally described as a collection of entities that
respond to their environment, evolving in specific ways given

mailto:phi53809@pennwest.edu
mailto:bpackard@pennwest.edu


Figure 1: The resulting pattern of Rule 30.

Figure 2: Rule 30.

particular parameters. This can occur in n-many dimensions,
although we usually observe it in one or two.

The image in Figure 2 is of a one dimensional cellular au-
tomata known as rule 30. It was discovered by the renowned
scientist Stephen Wolfram in 1983 [4]. It is one of 256 total
rules in one dimension [5]. It evolves using the rules labeled
above the structure. It is a one-dimensional automata that
takes the initial row and scans three squares of it at a time.
We can call these sections of three squares kernels. It applies
the rules to each kernel and generates the new row. Over some
number of steps, this rule generates the pyramidal shape.

We can see this behavior by looking at the very top of the
pyramid. As we scan across the top row, we take the kernels
containing the dark square. There is one kernel on the far
right, one dead center, and one on the far left. Each of these,
as can be seen by the rules, generates a dark square directly
below the first row. Thus we now have a row with three dark
squares. Keep repeating this process and you get immensely
complex behavior, as can be seen in Figure 1. The behavior
of this automata is so seemingly complex that Wolfram has
offered large cash prizes if anyone can find a pattern in the
center column of the pyramid.

Now we can look at the sort of quintessential cellular au-
tomata, often referred to as Conway’s Game of Life. It is in
two dimensions, but follows similarly simple rules. Just re-
member that rather than observing a kernel of three squares,

now our kernel is nine squares. The rules, as stated by Con-
way, are:

1. Birth rule: An empty, or “dead,” cell with precisely three
“live” neighbors (full cells) becomes live.

2. Death rule: A live cell with zero or one neighbors dies
of isolation; a live cell with four or more neighbors dies
of overcrowding.

3. Survival rule: A live cell with two or three neighbors
remains alive. [6]

These rules, despite their simplicity, lead to beautiful, almost
life-like structures. Below there is a series of images repre-
senting concurrent stages of arguably the most famous struc-
ture in the game of life: the glider. It has the fascinating
property that given an infinite grid, it will glide diagonally
downward, step by step, forever.

Figure 3: The stages of Conway’s Glider

The especially fascinating thing about the Game of Life, is
that its success is uncontested. It holds a fascinating unique-
ness in its stability and controlled evolution. Why is this?
What is so special about those three rules? The answer is that
we don’t quite know. Computational irreducibility is a brick
wall that stands firmly in the way of comprehending any sort
of conclusion regarding its behavior. However, in this paper
we devise a method to form a model that is analogous to the
automata itself whilst being more systemically analyzable.

This methodology, however, requires some notation.



Figure 4: The initial glider phase with numerical assignments.

4 Binary Expansion, and Dependency Form

To begin, we need a way of numerically describing the state
of a cellular automaton without directly using images. Iron-
ically, we will demonstrate this strategy using images. The
general sense of the method is that we are going to take a re-
gion within the automata space at state s and assign binary
values to each discrete “chunk” of that space.

We will use those values as the inputs of a finite-state machine
that will then churn out the next state s′ after t = 1.

The way to assign values is as shown in Figure 4. Take a
given grid of pixels, with dimensions LxW and label them
in ascending order going left-to-right, top-to-bottom. Then
going through in that order, depending on the state of each
given cell, assign it a 1 or a 0. A light square is assigned a 0,
and a dark square is assigned a 1. So for the image above: cell
one is a 0, cell 2 is a 0 ... cell 9 is a 1, cell 10 is a 0, etc. The
total state of the grid is then the binary sequence generated
by that assignment process. For the glider in this grid we
have a state sequence of: 0000000010010100011000000 or
in decimal: 75968. This is the binary form of the automata at
state “s” or time-step 0. This number is useful on its own, as it
is a unique number that we can assign any glider at this stage
in a 5x5 space (in which a glider exists at all times). Instead
of glider in pose “x” we can say the glider in state: 75968.

Now we need to find a way to take this state sequence and
utilize it to generate the next step of this automata. The way
to do this is to find the “dependency sequences” of each cell
in the grid. What we mean by this is that we need to take each
cell and generate the binary sequence corresponding to itself
and the eight cells around it. We do this as such: take the 3x3
kernel with cell 1 at its center. Since cell 1 is at the edge of
our grid, we imagine empty cells in all places where the cell
state is unknown.

We take this kernel and perform the same binary sequencing
procedure we did with the larger grid, going from left to right
row by row, assigning a 1 for dark cells and a 0 for light cells.

Thus cell 1 is assigned the sequence 000000000, cell 2
would be assigned 000000000, cell 3, 000000001, cell 4,
000000010...etc. These are the expanded forms of each cell.

Figure 5: The grid describing the dependency of cell 1.

To take these expanded sequences into dependency sequences
we simply take the binary value of the middle cell of each
kernel and place it in front of the other eight. So cell 9 for
example, with expanded form 000010010, would become:
100000010. The reasoning for this format will soon be ap-
parent. Thus, the total dependency form of our 5x5 grid is:

1. 000000000

2. 000000000

3. 000000001

4. 000000010

5. 000000100

6. 000000001

7. 000000010

8. 000001101

9. 100000010

11. 000010100

12. 000001000

13. 100000001

14. 000111011

15. 101000110

16. 010010100

17. 000100000

18. 001001000

19. 110101000

20. 101010000

21. 010010000

22. 000000000

23. 000100000

24. 001100000

25. 011000000

26. 010000000

The importance of these 9-bit sequences is that they are the
language of a deterministic finite automata that we will use to
describe Conway’s Game of Life. It is graphically designed
as such:

O

D11

D01

D12 A11 A12

D02 D03 A01

Dα

1

0

1 1 1

1 1 1

1

1

00 0 0 0

0 0 0 0

Figure 6: A Finite-State-Machine describing Conway’s Game.

With state table:

0 1
O D01 D11
D01 D01 D02
D02 D02 D03
D03 D03 A01
A01 A01 Dα
D11 D11 D12
D12 D12 A11
A11 A11 A12
A12 A12 Dα
Dα ∅ ∅



If we take our dependency sequences as strings and input
them into our automaton, it returns either an A-state (Alive-
state) or a D-state (Dead-state). We can demonstrate this with
cells 1 and 19.

Cell 1: 000000000. This returns D01

Cell 19: 101010000. This returns A11

The subscript to the right of “D” and “A” is used to notate the
original value of the square, which decides the branch of the
machine it uses. The number on the right is the “nth” alive-
state or the “ith” dead-state of each branch. The next step in
the process is to take these generated states, and return them
back into a state sequence by reassigning them a binary digit
from their state. The rule will be that A-states are assigned a
1, and D-states are assigned a 0. So for our sequence we get
the list:

1. 000000000→D01→ 0
2. 000000000→D01→ 0
3. 000000001→D02→ 0
4. 000000010→D02→ 0
5. 000000100→D02→ 0
6. 000000001→D02→ 0
7. 000000010→D02→ 0
8. 000001101→A01→ 1
9. 100000010→D12→ 0

10. 000010100→D03→ 0
11. 000001000→D01→ 0
12. 100000001→D12→ 0
13. 000111011→Dα→ 0

14. 101000110→A12→1
15. 010010100→A01→1
16. 000100000→D01→0
17. 001001000→D02→0
18. 110101000→A12→1
19. 101010000→A11→1
20. 010010000→D03→0
21. 000000000→D01→0
22. 000100000→D01→0
23. 001100000→D02→0
24. 011000000→D02→0
25. 010000000→D01→0

This process gives us the following binary state sequence:
000000010000011001100000 or in decimal: 67168. This
represents the state “s” of the automaton, or t = 1. Drawing it
out we get this:

Figure 7: The second phase of our glider with numerical assign-
ments.

This is exactly what our previously shown diagram said was
the next step of the glider.

This process also works equally well for one-dimensional au-
tomata like Rule 30. The only difference is that given the
position dependency of Rule 30, when we take it to expanded
form, we will not place the center square at the front of the
string. However, the process will look the same.

We first start with our initial state sequence, in this case; it
is simply 00100. Each kernel in this case will be three bits.
Taking our state sequence into our expanded list we get:

1. 000
2. 001
3. 010
4. 100
5. 000

We then use this automata:

O

A11

D01

D11 D12

A01 A02

1

0

1 1

0

1 1

00

0

Which gives the new states:

1. 000 → D01 → 0

2. 001 → A01 → 1

3. 010 → A01 → 1

4. 100 → A11 → 1

5. 000 → D01 → 0

Drawing this new frame we get:

This new row looks especially familiar when we place it un-
derneath the previous frame as such:



5 Reasons for this Representation

The study of cellular automata goes beyond the theoretical.

5.1 Reason 1: Modeling Real World Phenomena

Cellular automata can be Turing complete systems that act as
analogous representations of various real phenomena [7].

Many computational systems, whether social, biological,
physical or theoretical, are ripe with concepts well repre-
sented by the discrete deterministic structures of cellular
automata. For example, cellular automata have been used
to represent prokaryotic behaviors evidencing the idea that
single-cell organisms behave algorithmically [8]. Some cel-
lular automata also follow the epigenetic principle of evolu-
tionary biology. [9]

Having a means by which we can analyze not just the behav-
ior, but the structure, of these machines is critical to under-
standing why they so well represent real world phenomena.

5.2 Reason 2: Numerical Comparison of Automata

The finite-state representation allows us to directly compare
automata. We can use the methods of automata theory (clo-
sure, language analysis, etc.) to determine the equivalency,
similarity, or dissimilarity of each machine.

We can also see, in a more numerical way, the structures that
lead cellular automata to behave as they do.

We could try and ascertain these notions by the behavior or
rules alone, but we quickly run into the problem of computa-
tional irreducibility. If we knew how they worked by the rules
alone, the notion of emergence would be a moot subject.

5.3 Reason 3: Dimensional Reductionism

For certain experimentation where we want to ascertain the
behavior of higher dimensional automata, analyzing the be-
havior via trial and error/visually is not particularly helpful.

The numerical machinery of the finite-state version allows for
analyzing automata of any dimension. We already saw with
the Rule 30 automata, and the Game of Life, that increasing
the dimension of the automata increases the number of states.

In this paper, we took our numbers back into the visual for
the sake of demonstration, but there is no need to do this. The
binary representation works just as well and for much less
computational cost.

5.4 Reason 4: Ease of Experimentation

The finite-state form of the automata allows us to easily mod-
ify the rules for the sake of experimentation.

Say, for example, we want to determine what happens when
we allow for internal entropy in the cellular automata (Maybe
for representation of quantum phenomena, or social behav-
iors). All that needs done to the model is to replace the inputs
with probabilities, and we have a Markov chain with which
we can generate stochastic matrices to represent entropic be-
havior.

This is merely one instance of where the numerical, finite-
state representation serves as a benefit to computer scientists
trying to analyze cellular automata.

6 Conclusion

In review: we have a process that takes a given region of some
discrete space. It analyzes the alive or dead nature of each
unit within this space and assigns the proper binary values.
We call this the binary expansion, and it represents the state
of the system in the region at some time t.

From these values we generate a dependency form where
each unit of the region is given a sequence denoting its re-
lationships with the units around it. This sequence is run
through a finite-state machine corresponding to the cellular
automata we are analyzing.

For ones such as Conway’s game, and Rule 30, these au-
tomata are simple counting machines with final states rep-
resented by a D or an A, which then represents the dead or
alive state of the unit after computation.

We take this state and generate a new binary expansion rep-
resenting the regions state at time t+1. We can either use this
new expansion to run the process again, or we can assign the
values to some visual medium as demonstrated in the paper.

We hope to use this representation of cellular automata as a
means by which to analyze the birth/death rates of various
rules, and determine which machines seem to overpopulate,
underpopulate, or maintain some sort of homeostasis.

We also plan on using genetic algorithms to generate rule-sets
that optimize certain behaviors such as stable structures (like
gliders), exponential growth patterns, etc. We will then use
the finite-state representation to compare these rule-sets, and
attempt to find the underlying cause of emergent behaviors.



References

[1] J. E. Hanson, Cellular automata, emergent phenomena in,
Computational Complexity, page 325–335, doi:10.1007/978-
1-4614-1800-9 22.
[2] H. Cisneros, J. Sivic, T. Mikolov, Visualizing computa-
tion in large-scale cellular automata, 2021.
[3] S. Vandevelde, J. Vennekens, Problife: A probabilistic
game of life, 2022.
[4] E. Weisstein, Rule 30.
[5] F. Berto, T. Jacopo, Cellular automata, 2012.
[6] S. Roberts, The lasting lessons of john conway’s game of
life, 2020.
[7] L. Milano, Y. Liu, X. Feng, D. Haase, Cellular automata.
[8] R. Bowness, M. A. Chaplain, G. G. Powathil, S. H. Gille-
spie, Modelling the effects of bacterial cell state and spatial
location on tuberculosis treatment: Insights from a hybrid
multiscale cellular automaton model, Journal of Theoretical
Biology, 446:(2018), 87–100, doi:10.1016/j.jtbi.2018.03.006.
[9] L. Caballero, B. Hodge, S. Hernandez, Conway’s “game
of life” and the epigenetic principle, 2016.


	Introduction
	Related Work
	Cellular Automata
	Binary Expansion, and Dependency Form
	Reasons for this Representation
	Reason 1: Modeling Real World Phenomena
	Reason 2: Numerical Comparison of Automata
	Reason 3: Dimensional Reductionism
	Reason 4: Ease of Experimentation

	Conclusion

